
ETMS System Design Document
Version 6.0

24-1

Section 24

Parser Function

The Parser function of the ETMS is responsible for getting message packets of National
Airspace System (NAS) data and Flight Schedule data from the NAS Data Distributor
(NAS.DIST). The relevant data is extracted, converted, and passed to the Flight Database
Processor (FDB). The most notable data conversion is the transformation of a flight path into an
event list.

Processing Overview
The Parser function consists of five processes (queue_driver, feedback.receiver, parser.relay,
routedb.relay and parser), as shown in Figure 24-1. The queue_driver process reads packets of
data from the NAS Data Distributor and enqueues valid data packets for the Parser process.
The queue_driver process communicates with the NAS.DIST via a network addressing
connection and with the Parser process via a queue. The Parser process extracts and converts
relevant data parsed from the input data packets and passes the data to the parser.relay process.
The Parser process communicates with the parser.relay process via another queue. The
parser.relay process sends parsed data to the fdb receiver which places the data into a queue for
the Flight Database Processor. The Parser process also forwards parsed flight plan (FZ) data to
the routedb.relay process via a queue. The routedb.relay process sends parsed FZ data to the
routedb.receiver process. The feedback.receiver process transfers incomplete flight amendment
(AF) messages from the feedback relay process of the Freight Database Processor back to the
Parser process for more complete data transformation. Most AF messages specify a new flight
path (field 10) which then has to be converted by the Parser process into an event list. An
altitude and speed are necessary for this conversion but the AF message rarely contains all this
information. The flight database has this information stored from previous messages for this
particular flight, so when an incomplete AF message gets to the Flight Database Processor, the
stored speed and altitude are filled into the data structure and passed back to the Parser process,
via the feedback.receiver process. The Flight Database Processor communicates with the Parser
process via a mailbox, created by the feedback.receiver process.

Because running in real time is an important consideration, it became necessary to cut down on
costly input/output (I/O) wait time. Therefore, the queueing method of inter-process
communications was developed in order to separate processing time from I/O wait time, as well
as to hold data temporarily in case of a backlog (see Section 23 for more information on queues).

24.1 The queue_driver Process

Purpose
The queue_driver process is the first process within the Parser function to come into play. Its
purpose is to hook up to the NAS.DIST, read data blocks from the service provider, and enqueue
valid data blocks, which are to be dequeued and parsed by the Parser process.

ETMS System Design Document
Version 6.0

24-2

NAS.DISTSDB

queue_driver

Parser

parser.relayroutedb.relay

Route DB FDB

Geographical Data

Aircraft Category Data

Aircraft Profile Data

feedback.
receiver

FA

FDBP
Transactions

Scheduled Data NAS Messages

NAS Messages
Flight Schedule Messages

Parser
Function

Input
Queue

Output
queue

Figure 24-1. Data Flow of the Parser Function

ETMS System Design Document
Version 6.0

24-3

Execution Control
The Parser function was designed to be manually or automatically started (or restarted) if
problems occur. Most often, restarting is done automatically via the Nodescan process that runs
on the same node as the Parser function (see Section 33 on Nodescan).

The queue_driver process is started automatically by Nodescan or manually by an ETMS
operator. If problems occur, the queue_driver can be restarted without bringing any of the other
Parser function processes down. This ensures a continuous flow of parsed data even if other
processes are having trouble. If the queue_driver process crashes, all data stored in queues can
be recovered when it is restarted.

Input
The queue_driver input is comprised of the following four types of separate messages, grouped
into packets of messages, called subtypes, by the NAS.DIST:

 (1) NAS messages, consisting of the following subtypes:

(a) amendment (AF)

(b) arrival (AZ)

(c) departure (DZ)

(d) flight plan (FZ)

(e) cancellation (RZ)

(f) position update (TZ)

(g) boundary crossing (UZ)

(h) oceanic position updates (TO)

(i) ARTCC status (CCC)

 (2) Schedule Data messages, consisting of the following subtypes:

(a) scheduled flight plan (FS)

(b) scheduled cancellation (RS)

 (3) Test messages, which are used for checking if local network connections are
working properly

 (4) Flight path data from the Flight Database Processor (FA).

The input message packet is an array (of up to 8192 characters) filled with as many separate
messages as can fit without overflowing the array's bounds. Within the array, the messages are
separated from one another by a linefeed. (FA messages are individually stored in 8192-byte
buffers.)

ETMS System Design Document
Version 6.0

24-4

Output
The queue_driver process passes to the Parser process packets of NAS and Flight Schedule
messages, previously listed under the Input subheading.

Processing
The first action of the queue_driver process, as illustrated in Figure 24-2, is to create a time
stamped pad for all output. This pad is closed daily so an output pad does not lock up too much
disk space.

The queue_driver process then creates the stack and the queues needed for inter-process
communications within the entire Parser function. The stack is used to keep track of available
memory information (see Section 15 on queues). Three queues need to be created: one between
the queue_driver process and the Parser process, one between the Parser process and the
parser.relay process, and one between the Parser and the routedb.relay process. The queueing
technique has been designed so that if a process crashes and has to be restarted, that process will
use the previously created stack and queues to hook up to the next process. This ensures that any
data in a queue at the time of a crash will still be there when the process is restarted.

The queue_driver process then creates the feedback.receiver as a child process. This receiver
allows communications from the Flight Database Processor to the Parser process.

The queue_driver process then does all necessary network addressing initialization, builds the
service provider address to search the network for NAS.DIST, and attempts to register with
NAS.DIST. The service provider address contains the site switch name passed in on the
command line, NAS.DIST class name, any node switch, any invocation number and '0'
subaddress. If the registration is unsuccessful, the queue_driver will periodically try to reregister.
(Up to 15 consecutive times; otherwise terminate writing for restart.)

Due to the asynchronous nature of network addressing, it is possible to get NAS data messages
while the queue_driver is waiting for a registration response. The queue_driver processes such
messages and enqueues them for the parser process.

Once the queue_driver process has registered with the NAS.DIST, it reads message packets from
the service provider. As a packet is read from the network addressing port, the queue_driver
process checks that the port is functioning properly by looking at the status of the completed
read operation. If at any time there is a problem with the network addressing connection
(network or mailbox crash), the queue driver will try to reestablish a connection.

ETMS System Design Document
Version 6.0

24-5

Create stack
and queues

Successful
read?

Create pad
for output

Create feedback
receiver

Build NAS.address

Register with
NAS.DIST

Enqueue message
packet for parsing

Valid
packet
type?

Read next NAS.DIST
message packet

Begin
queue_ driver

yes

yes

no

Figure 24-2. Sequential Logic of queue_driver Process

ETMS System Design Document
Version 6.0

24-6

Once a message packet has been validated, the queue_driver process enqueues it so that it can be
dequeued and parsed by the Parser process. The queue_driver process then waits for the next
message packet to come in through the NAS.DIST, at which time the entire sequence is repeated.

Error Conditions and Handling
Any errors that occur during the creation of the output pad, stack and queues, feedback.receiver
process or mailbox operations are reported to the screen along with a diagnostic message. If the
error is terminal, the program exits and is restarted by nodescan.

24.2 The feedback.receiver Process

Purpose
The feedback.receiver process is set up to provide communications from the Flight Database
Processor to the Parser process. It is used to pass necessary data previously stored in the flight
database back to the Parser process to aid in route conversion. Since queues have to be set up
on local nodes, a method of enqueuing a message packet on one node and dequeuing that
message packet on another node has been devised.

Execution_control
The queue_driver process invokes the feedback.receiver process as a standalone process.

Input
A data structure holding all information for a particular flight stored in the flight database.

Output
The same data structure, enqueued in the Parser process input queue.

Processing
The feedback.receiver process creates a socket and hooks into the existing input queue between
the queue_driver process and the Parser process. The Flight Database Processor connects to
this socket, and the feedback.receiver passes completed flight data (specified as an FA message)
into the input queue for the Parser process.

Error Conditions and Handling
Any errors which occur during the operation of the feedback.receiver process are reported to the
screen. Any terminal error is reported, and the process crashes.

ETMS System Design Document
Version 6.0

24-7

24.3 The parser.relay Process

Purpose
The parser.relay process is set up to aid queue operations between different processes. It is used
to enqueue parsed data packets to be dequeued by the Flight Database Processor. The
parser.relay process takes data that has been enqueued by the Parser process and sends it via a
socket to the Flight Database Processor.

Execution_control
The Parser process invokes the parser.relay process as a stand-alone process. It is automatically
restarted if any problems occur (see Section 15 on relays).

Input
Enqueued Flight Database Processor transactions. Refer to section 24.7 for a list of the
transaction types and information regarding them.

Output
Enqueued Flight Database Processor transactions. Refer to section 24.7 for a list of the
transaction types and information regarding them.

Processing
The Parser process, once all data conversions for a single NAS message have been completed,
enqueues a data structure into the parser.relay process queue (set up by the queue_driver
process). The parser.relay process dequeues this data and ships it through a socket (set up by the
Flight Database Processor) to the Flight Database Processor.

Error Conditions and Handling
Any errors which occur during the operation of the parser.relay process are reported to the
screen. If a terminal error is reported, the process exits.

24.4 The routedb.relay Process

Purpose
The routedb.relay process is set up to aid queue operations between different processes. It is
used to enqueue parsed data packets to be dequeued by the Route Database Processor. The
routedb.relay process takes data that has been enqueued by the Parser process and sends it via a
socket to the Route Database Processor.

Execution_control
The Parser process invokes the routedb.relay process as a stand-alone process. It is
automatically restarted if any problems occur (see Section 15 on relays).

ETMS System Design Document
Version 6.0

24-8

Input
Enqueued Route Database Processor transactions. Refer to section 24.7 for a list of the
transaction types and information regarding them.

Output
Enqueued Route Database Processor transactions. Refer to section 24.7 for a list of the
transaction types and information regarding them.

Processing
The Parser process, once all data conversions for a single NAS message have been completed,
enqueues a data structure into the routedb.relay process queue (set up by the queue_driver
process). The routedb.relay process dequeues this data and ships it through a socket (set up by
the Route Database Processor) to the Route Database Processor.

Error Conditions and Handling
Any errors which occur during the operation of the routedb.relay process are reported to the
screen. If a terminal error is reported, the process exits.

24.5 The Parser Process

Purpose
The purpose of the Parser process is to break down a NAS, OMP, or Flight Schedule message
into its constituent parts, convert data to an internal form, and pass the parsed data to the Flight
Database Processor. The Parser process dequeues packets of NAS or Flight Schedule messages
and separates them into single messages. A single NAS or Flight Schedule message then has its
separate fields extracted, converted if necessary, and stored. The extracted data is sent to the
Flight Database Processor once the entire message has been successfully parsed.

Execution Control
The Parser process is started automatically by Nodescan or manually by an ETMS operator. If
problems occur, it can be restarted without bringing any of the other Parser function processes
down. This ensures a continuous flow of parsed data even if other processes are having trouble.
If the Parser process crashes, all data stored in queues can be recovered when it is restarted.

Input
Following is the Parser process input data:

 (1) NAS messages — messages containing flight data to be parsed

 (2) OMP messages — messages containing oceanic position data

 (3) Flight Schedule messages — messages containing scheduled flight data from the
OAG to be parsed

ETMS System Design Document
Version 6.0

24-9

 (4) Feedback messages — messages returned to the Parser for processing by the FDB
and to control message flow to the FDB

 (5) Geographical Data — numeric boundaries (latitude/longitude) for Air Route
Traffic Control Centers (ARTCCs), sectors, fixes, etc.

 (6) Aircraft Category Data — category values (weight, military, etc.) for a given
aircraft type

 (7) Aircraft Profile Data — performance characteristics for a given aircraft type used
by the Flight Profile Modeling module to model an aircraft flight

 (8) National Route Program (NRP) parameter data, containing information to be used
for validating field 3 and field 11 portions of NAS messages.

Output
The Parser process enqueues converted data (extracted from each input message) to the
parser.relay process. The Parser also enqueues converted flight plan data to the routedb.relay
process.

Processing Overview
There are five main tasks associated with the Parser process, as depicted in Figure 24-3. The
first task is the initialization of the system. The second task entails the parsing of input messages
and converting the data. The third task is the most notable data conversion, processing a flight
path into an event list. The fourth task is the modeling of the aircraft flight. The fifth and final
task entails the cleaning up of the event list. All of these tasks are performed by individual
Parser process modules.

The Parser Initialization module initializes all values for the Parser process prior to the parsing
of any input messages (see Section 24.4.1).

The Parse Messages module extracts data from the input messages and does some minor data
conversions (see Section 24.4.2).

The Route Processor module is called to translate a flight path into an event list (see Section
24.4.3). The Parser process provides all the data necessary to make this conversion (see
Table 24-1). Event lists are created only from messages that contain route fields (i.e., FS, FZ,
UZ, FA, and a few AF messages).

The Flight Profile Modeling (assign_a_profile) module supplies aircraft characteristics to the
Route Processor module so it can accurately model the aircraft's route of flight (see Section
24.4.4.2). The assign_a_profile module uses specific aircraft category data, which depend on the
type of aircraft being used, to model the aircraft's performance.

If the Route Processor module was able to create an event list from the given data, the
cleanup_evlist module checks the event list for any idiosyncrasies and resolves them (see Section
24.4.5).

ETMS System Design Document
Version 6.0

24-10

Aircraft
category

data

NAS,
Flight

Schedule,
Feedback
Messages

FDB TransactionsInput
Parameters

Event List

Route of
flight
Data

Dynamic Parameters

Event List

A/C Data

Grid
DB

Profile
DB

clean up
list

Route
Processor

Flight
Profile

Modeling

Parse
Messages

Parser
Initialization

Total.txtAcft.txt

invalid_prefix_
suffix

Diag.txt

Fixes_
notfound.dat

Fix_radial.datProfile.txt

Routes_
notfound.dat

 Figure 24-3. Data Flow of the NAS Message Parser Process

ETMS System Design Document
Version 6.0

24-11

 Table 24-1. erect Data Structures

erect (event record type)

Library Name: ttm_openlib Element Name: event.h

Purpose: To contain information about an event. The contents and type of each data item
is shown here.

Field Name: time_index Field Type: INT32

 Data Item Definition Unit/Range Which Bits?

 event kind
 Is this event an arrival or
 departure?

 0 - 2 31 - 30

 phase In which phase of the flight
does the event occur?

 enumerated type from TAKEOFF
to LANDING (0-6)

 29 - 27

 time At what time does this
event occur?

 minutes from midnight 26 - 15

 TDB binary
time_type

 Is this an actual or
predicted event?

 1 means actual, 0 means
predicted

 14

 time type Desc. the type of the event
time (actual, predicted).

 constants defining time types
range from 0 - 7

 13 - 11

 unused -- -- 10 - 0

Field Name: del_alt-vel Field Type: INT32

 Data Item Definition Unit/Range Which Bits?

 delay Any filed airborne delay. minutes 31 – 22

 altitude The altitude of this flight at
this event.

 flight level in hundreds of feet 21 – 12

 velocity
 The velocity of this flight at
this event.

 nautical miles per minute 11-0

Field Name: distance Field Type: short

 Data Item Definition Unit/Range Which Bits?

 waypoint flag Is this position of this event
a waypoint of the flight?

 1 means yes, 0 no 15

 unused -- -- 14

 distance The distance this flight has
flown from the last event.

 nautical miles 13 - 0

ETMS System Design Document
Version 6.0

24-12

 Table 24-1. erect Data Structures (continued)

erect (event record type)
Field Name: heading_type Field Type: short

 Data Item Definition Unit/Range Which Bits?

 monitor flag Is the element of this event
monitored?

 1 means yes, o no 15

 heading The heading of this flight at
this event.

 0 – 359 degrees 14 – 6

 element type At what type of element
does this event occur?

 These types currently range
from 0 to 18.

 5 - 0

Field Name: element_indes Field Type: short

 Data Item Definition Unit/Range Which Bits?

 element_indes The element’s index in the
grid database/

 0 – 65535 15 - 0

Field Name: latitude Field Type: short

 Data Item Definition Unit/Range Which Bits?

 latitude The latitude of the position
of this event.

 radians times 1000 15 - 0

Field Name: longitude Field Type: short

 Data Item Definition Unit/Range Which Bits?

 longitude
 The longitude of the
position of this event.

 radians times 1000 15 - 0

ETMS System Design Document
Version 6.0

24-13

24.5.1 The Parser Initialization Module

Purpose
The Parser Initialization module sets up the initial state of the Parser process. Once everything
is properly initialized, parsing of input messages may begin.

Input
Parameters consisting of necessary input files and dynamic variables used throughout the Parser
process.

Output
Dynamic parameters read from input files and passed to the Route Processor module specifying
which types of actions to carry out.

Processing
The Parser Initialization module (as shown in Figure 24-4) starts off by creating a time stamped
pad for all output. This pad is closed daily so an output pad does not occupy too much disk
space.

The next step is initializing all elements to be used throughout the Parser process. This task
encompasses acquiring memory, initializing variables and data structures, and initializing the
grid database (see Section 19).

The Parser Initialization module then maps into virtual memory certain previously created
aircraft category files that hold data for all known aircraft types. These files are used throughout
the Parser process.

The Parser Initialization module then reads the local clock time and computes a current time
stamp, which consists of month, day, hour, and minute. All files opened by the Parser
Initialization module have this time stamp appended to their pathnames. The Parser
Initialization module then passes the time stamp to the Route Processor module so it can append
the same time stamp to its files. Files are closed and new files opened (with current time stamps)
every twenty-four hours. This allows the user to save, scan through, or delete previous files
without having to worry about whether the file is currently locked by the Parser process.

The Parser Initialization module's next action involves the opening of static data files used by
the assign_a_profile module. Since the assign_a_profile module doesn't stand on its own but is
part of the Parser process, the Parser Initialization module is responsible for opening certain
mapfiles needed by the assign_a_profile module. Pointers to these files are used by the
assign_a_profile module, allowing access to the desired data.

The next step is to read the NRP parameter files for field 3 and field 11 parsing.

ETMS System Design Document
Version 6.0

24-14

Read NRP
Parameter files

Create pad
For output

Set up route
processor flags

Set up flight
Profile mapfiles

Time stamp
And open files

Map aircraft
Category files

Initialize
values

Open stack
and queues

no

no

yes

yes

Start relay program End

parse messages

Begin

Successfully
started?

Successfully
opened?

Figure 24-4. Sequential Logic for Parser Initialization Module

ETMS System Design Document
Version 6.0

24-15

The Parser Initialization module reads values which are used as flags by the Route Processor
module. The flags primarily enable/disable the printing of certain debugging information to the
screen from the Route Processor module.

The Parser Initialization module then opens the stack and queues needed for data
communication. The stack and queues are created by the queue_driver process and, once opened,
allow access to the NAS or Flight Schedule message packets that the queue_driver process or
feedback.receiver has enqueued. If there is a problem opening the stack and queues, the Parser
process outputs diagnostic messages and exits, so it can get restarted by Nodescan.

Once the stack and queues have been opened successfully, the parser.relay and routedb.relay
processes are invoked. If there is a problem invoking either process, the Parser process exits, to
get restarted by Nodescan.

Error Conditions and Handling
Any errors that occur in the Parser Initialization module are logged in a diagnostic error file.
Any terminal error is logged and the process terminates, waiting for the Nodescan process to
restart the Parser process.

24.5.2 The Parse Messages Module

Purpose
The Parse Messages module separates input message packets into individual messages, identifies
the message types, and extracts the necessary data from each message.

Input
Following is the Parse Messages module input data:

 (1) Raw flight messages — NAS, Flight Schedule, and OMP messages

 (2) Feedback messages — complete data for a requested flight

 (3) Aircraft category data — values for all known aircraft types

 (4) Completed event list —returned from the cleanup_evlist module

Output
Following is the Parse Messages module output data:

 (1) Route of flight data — values needed for the Route Processor module to create an
event list

 (2) FDB transactions — parsed data to be stored in the flight database

Processing
The Parse Messages module (as shown in Figure 24-5) starts off by dequeueing a packet of data.
The data packet consists of input messages separated by linefeeds.

ETMS System Design Document
Version 6.0

24-16

Parse Messages extracts a single input message from the packet and identifies its type. Once the
message type is known, the Parse Messages module calls the appropriate routine to extract the
data from that message type.

Since every NAS message type has a structured format (see Section 6 on NAS messages), the
data may be easily extracted in most cases. Some fields may hold different possible data formats
(e.g., a coordination fix may be from two to twelve characters long) or different field types (e.g.,
an FZ message may have in its seventh field either an assigned or a requested altitude format). If
the formats match when checked, the Parse Messages module extracts the data, which are
converted if necessary (e.g., speed is input in knots but gets converted to [nautical miles per
minute] * 100) and then stored.

When the Parse Messages module has successfully extracted all the data, the data is enqueued
and the parser.relay process sends the data to the Flight Database Processor. If the data is based
on a flight plan (FZ), then the data is also enqueued to the routedb.relay process. However, not
all messages are parsed successfully. Occasionally, data extraction errors occur, usually due to a
malformed message. If these errors are perceived to be minor, all correctly parsed data are sent to
the Flight Database Processor. If a serious error occurs (e.g., no correct fields were found), a
message is catalogued in an error file, and the Parse Messages module discards the data instead
of sending the data to the Flight Database Processor.

Sending data to the Flight Database Processor simply consists of placing the data in a
previously created queue. Once in the queue, this data is dequeued by the parser.relay process,
transferred via a socket, and placed into a queue local to the Flight Database Processor
processing node. To reduce network loading, the Parser only places the data into the queue when
the Parser is on the "Master" processing string. The FDB informs the Parser of its status (master
or slave) by periodically sending a message to the parser via the feedback. receiver.

Once the Parse Messages module has singled out an individual message from a data packet,
extracted and (when necessary) converted the data from that message, and passed the extracted
data to the Flight Database Processor, it has completed one cycle of its process. The next action
of the Parse Messages module is to single out the next input message from the message packet
and repeat the extraction sequence. If there are no more input messages in the message packet,
then the Parse Messages module dequeues the next message packet and repeats the entire data
extraction process.

To give an example of how data from an input message are extracted, the bottom line parsing
routine fill_struct_fz will be examined (see Figure 24-6). This is a low-level routine which parses
the data from a flight plan (FZ) message. It calls basic string manipulation routines which read
characters from the current spot in the message until either a certain number of characters are
read or a specific delimiter is encountered. The number of characters and a set of delimiters are
passed as parameters to the string manipulation routines. All message types have a similar
parsing routine associated with their format.

The first action of the fill_struct_fz routine is to clear local variables that are to be used during
the parsing of the message. The encoded time stamp, the ARTCC of origin, and the message type
have been previously parsed, leaving the first unique field to be parsed.

ETMS System Design Document
Version 6.0

24-17

Dequeue
data packet

Send data
To FDBP

Create event
List

Extract data

Strip out
single message

FZ message?

Send data
To routedb

noyes

no
yes

no
yes

yes

no

no

yes

End

Begin

Need event
list?

Success parsing
data?

Sending to
FDBP?

More messages
in packet?

Figure 24-5. Sequential Logic for Parser Messages Module

ETMS System Design Document
Version 6.0

24-18

look up arrival
fix

parse coordination
time

parse altitudes

parse route
(field 10)

parse remarks
(field 11)

find airport
aliases

process route
Into event list

clear local
variables

parse computer
ID

look up aircraft
type

set flight
category

parse speed

parse coordination
fix

Parse aircraft
data

parse flight ID

End

Begin

Figure 24-6. Sequential Logic for the fill_struct_fz Routine

ETMS System Design Document
Version 6.0

24-19

The first field to be parsed contains the flight ID. Characters are processed until either seven
characters have been read (the current maximum size for a flight ID field), or a backslash or a
space is encountered.

The next field to be parsed contains the (optional) computer ID. Characters are read until a space
is encountered. The field is then checked for proper syntax. If the field was not comprised of
exactly three numeric characters, then the routine assumes that the optional computer ID was not
specified and that the field just parsed is the next required field.

The next field to be parsed consists of aircraft data. Characters are read until a space is
encountered. As many as three elements, separated by the "/" character, may be contained in this
field. The mandatory field, the aircraft type, may be accompanied by a preceding equipment
prefix identifier and a succeeding equipment suffix. The equipment prefix identifier may have
one or two characters, while the equipment suffix identifier contains one character. The optional
fields are validated against values specified in the NRP parameters files. Once the aircraft type
has been read, associated data for that type are looked up in the aircraft category map file. The
flight category is then set, depending on the flight ID and values returned from the aircraft type
lookup. These values are saved in the same data structure as the other parsed fields, later to be
passed to the Flight Database Processor for storage.

The aircraft speed is the next field to be parsed. Characters are read until a space is encountered.
The speed syntax is checked to make sure it is numeric. It is then converted to an internal format
(nautical miles per minute * 100).

The next field to be parsed is the coordination fix field. Characters are read until a space is
encountered. This field can consist of an airport name, a fix name, or a latitude/longitude value.

Coordination time is the next field to be parsed. Characters are read until a space is encountered.
This value is checked to be numeric and is then converted to minutes after midnight.

The altitude field is parsed next. Characters are read until a space is encountered. This value is
also checked to be numeric.

The next field in an FZ message, containing the flight path, is parsed. Characters are read until
either a space or a linefeed is encountered. The arrival and departure airports (positioned at the
beginning and the end, respectively, of the route text) are extracted from the route text. Any
aliases for these airports are found by looking up the airport name in a hash table and following
the linked-list chain to the end.

The Route Processor module is then called (being passed a data structure containing all the
previously parsed data) to convert the route into an event list. The final event (arrival fix) is
inspected to ascertain certain geographical values for that arrival fix.

The last field in an FZ message, which is optional, is the remarks field. This is free form text
limited to 128 characters. The Fill_Remarks function is called to scan the field for remarks which
match against any in the set of remarks contained in the NRP parameters files. Corresponding
bits are set in the ac_rmks_bitflags field for any matches found.

At this point, all the data within the FZ message have been parsed, and any conversions have
been made. The result is a data structure filled with values assumed to have been correctly
parsed. This data structure is passed back to the calling routine and then enqueued to the

ETMS System Design Document
Version 6.0

24-20

parser.relay for retrieval by the Flight Database Processor and enqueued to the routedb.relay
for retrieval by the Route Database Processor.

Error Conditions and Handling
Any errors or perceived problems which occur during the Parse Messages module are logged in
a diagnostic error file. Any terminal error is logged in the diagnostic error file or the parser
output file. The Parser process then crashes and waits for the Nodescan process to restart the
Parser process.

24.5.3 The Route Processor Module

Purpose
The Route Processor interprets the route text of each NAS message to determine the path of the
flight. Based on the path, it creates a list of monitored events and waypoints. It also provides
information about fixes or airports directly to the Parser function. The data flow diagram in
Figure 24-7 shows how the Route Processor interacts with other areas of the Parser.

 NOTE: The route text for an individual flight is often called a field 10 because it comes from the
tenth field of the FZ or UZ message that refers to that flight. Throughout the rest of this
section, the term field 10 will be used extensively in this context.

ETMS System Design Document
Version 6.0

24-21

cleanup_evlist

Route Processor Flight Profile
Modeling

Parse Messages

Grid Data
Base

Fix_
radial.dat

Event listfixes & airports

fix radials Event list
routes

Fix, route, & cell
info

Aircraft type

Profile info

NAS Messages
Schedule Messages, DOTS messages

Route of
flight
Data

Fixes_
notfound.dat

Routes_
notfound.dat

 Figure 24-7. Data Flow of the Lower Parser Modules

Design Issue: Important Data Structures
All information necessary for the building of the cell list, used by the Semantic Parser, is saved
in the route_context and evidbt record structures (see Tables 24-2 and 24-3). There are also
recoverable and non-recoverable errors: their handling is explained in the individual module
descriptions.

There are also two structures used to pass information about individual elements back and forth.
These are the fixid record and the routeid record (see Tables 24-4 and 24-5). The first field in
each, id_type , is used to indicate several things about the element: its type, such as named route,
named fix, or latitude/longitude fix; whether it has already been successfully looked up in the
database; and, for fixes, a flag to indicate whether this is either the initial or final fix in the field
10.

ETMS System Design Document
Version 6.0

24-22

 Table 24-2. route_context Data Structure

route_context
Library Name: routeproc_lib Element Name: griddb_interface.ins.pas

Purpose: Stores information about each flight plan that is needed to process the route

 Data Item Definition Unit/Format/Range Var. Type

 ev See Table 8 – 5 substructure with
 additional data fields

 evidbt

 prevalt Previous altitude superhi/hi/lo element_
 subtype

 prevctr Previous center offset into mapped files long

 prevsect Previous sector offset into mapped files long

 prevrow Previous row 0 – 359 short

 prevcol Previous column 0 – 839 short

 inuse Is this route context
 being used?

 TRUE or FALSE Boolean

 generalbearing Bearing of this flight from
start point to end point

 0 – 359 short

 cell_head First cell in saved linked
list of pointer to gridcells

 -- cel_link_ptr

 cell_tail Last cell in saved linked
list of pointer to gridcells

 -- cel_link_ptr

 save_els First element in saved list
of events to make

 -- events_to_
 make_ptr

 save_tail Last element in saved list
of events to make

 -- events_to_
 make_ptr

This flag is used because the Syntactic Parser makes no distinction between fixes and airports;
every token found in a fix position (the odd-numbered positions in the field 10) is considered a
fix. Because airports and fixes must be distinguished by the Semantic Parser, the Syntactic
Parser sets a flag when sending the first and last fixes of a field 10 to the Semantic Parser. This
flag indicates that the Semantic Parser should first look for this fix in the airport database, and
only if the fix is not found there, in the fix database.

ETMS System Design Document
Version 6.0

24-23

 Table 24-3. evidbt Data Structure

evidbt
Library Name: route_openlib Element Name: fill_evist.h

Purpose: Stores information about each flight plan that is needed to process the route

 Data Item Definition Unit/Format/Range Var. Type

 evlist address of event list -- erect_arr_ptr

 evpos index to event list array 0 – MAXEVENTS short

 eltype element type (e.f., STAR
NAVAID, superhigh sector)

 0 – 18 short

 elkink kind of event (e.g., arrival,
departure, etc.)

 0 – 2 long

 elindex external index of element range varies by element type short

 actype name of aircraft type alphanumeric string4

 arrlat latitude of destination fix radians float

 arrlon longitude of destination
 fix

 radians float

 ellat latitude of current
 element

 radians float

 ellon longitude of current
element

 radians float

 altitude altitude at current
 location

 100’s of feet long

 elvel velocity at current
 location

 nautical miles/minutes long

 heading bearing from previous
event’s position

 0 – 359 short

 deptime departure time 0 – 2880 minutes short

 delay delay in flight plan (as
 specified at certain fixes)

 Minutes long

 cralt cruising altitude 0 – 640 (100’s of feet) long

 crvel cruising velocity nautical miles/minutes long

 monitor Is this event monitored? 0 – 1 short

 waypoint Is this event a waypoint? 0 – 1 short

 phase flight phase 0 – 6 long

 fid flight ID alphanumeric string10

 newfl Is this a new flight? TRUE or FALSE Boolean

ETMS System Design Document
Version 6.0

24-24

 Table 24-4. fixid Data Structure

fixid
Library Name: routeproc_openlib Element Name: griddb_interfaceh

Purpose: Stores information about an individual fix, passes it back and forth between the syntactic
and semantic parts of the route processor

 Data Item Definition Unit/Format/Range Var. Type

 id_type type of fix (or airport) to
look for

 used bitwise to indicate type,
whether it is in database

 long

 name fix name as found in or
created from the field 10

 alphanumeric string10

 namelen length of name 0 – 10 long

 lat fix latitude radians float

 long fix longitude radians float

 magvar magnetic variation from
true North

 plus or minus degrees short

 delay delay associated with the
fix in field 10

 minutes short

 ap_type non-FAR, non-FDR airport
indicator (‘*’ in field 10)

 0 – 1 short

 offset offset into mapped fix or
airport file

 range depends on file size long

 id external index range depends of file size short

 sub_num numeric value for
element_subtype

 5 – 11 short

 row row of grid this fix is in 0 – 359 short

 col column of grid this fix is in 0 – 859 short

 db_name name of fix used in the
grid database

 alphanumeric string10

ETMS System Design Document
Version 6.0

24-25

 Table 24-5. routeid Data Structure

routeid
Library Name: routeproc_openlib Element Name: griddb_interfaceh

Purpose: Stores information about an individual route, passes it back and forth between the
syntactic and semantic parts of the route processor

 Data Item Definition Unit/Format/Range Var. Type

 id_type type of route to look for bits indicate the root type and
whether it is in database

 long

 r_start start offset of this route—
obsolete

 -- long

 r_end end offset of this route—
obsolete

 -- long

 name route name alphanumeric string10

 namelen length of name 0 – 10 short

 offset offset into mapped route
file

 range depends on file size long

 id external index range depends of file size short

 sub_num numeric value for
element_subtype

 12 - 16 short

 circle_num If this is a military route,
number of times it circles

 1 – 15 short

Input
The parts of a NAS message needed to determine the flight path are passed as input to Route
Processor in the nas_msg record. This input includes

 (1) Aircraft type — used for determining ascent and descent profiles

 (2) Field 10 — the flight path to parse, which begins with a fix identifier and is
followed by at least one unit consisting of a route identifier followed by a fix
identifier. A period separates one route or fix identifier from that which follows it
(i.e., fix.route.fix.route.fix , etc.). Sometimes one or more of the entries in the field
10 will be empty; in these cases, the fix or route is said to be implied. See Section
24.4.3.1 for more about implied routes and fixes.

 (3) Cruising altitude — used for determining flight profile

 (4) Cruising velocity — used for estimating times along flight

ETMS System Design Document
Version 6.0

24-26

Output
The following items are produced as a result of processing routes:

 (1) Status code — number of events on the event list or error code

 (2) Event list — an array of records, each of which describes a waypoint or a
monitored event (see Table 24-1 for details on the records).

 (3) File of fix-radial routes (switch option for this in method_file.txt) — used to
update the grid database continually

 (4) File of unknown routes — used to update the grid database continually

 (5) File of unknown fixes — used to update the grid database continually

Processing Overview
The Route Processor module's Syntactic Parser checks the field 10 for syntactic correctness and
then calls the Semantic Parser to determine the flight path. When the entire path has been
created, the event list is filled with waypoints and monitored elements. The event count (or
negative status code if error) is returned to the Parser function. See Section 24.4.3.1 for details
on the syntactic processing, and Section 24.4.3.2 for details on the semantic route processing.
See Figure 24-8 for the data flow diagram of the route processor.

Semantic
Parser

Syntactic
Parser

Grid Data
Base

Fixes_
notfound.dat

Fix_
radial.dat Routes_

notfound.dat

Field 10, ac_type,
cruise altitude,& velocity

Element array

Fix, route, &
cell info

Aircraft type

Profile Info

routes

Event list

fix radials

fixes & airports

Figure 24-8. Data Flow of the Route Processor Module

ETMS System Design Document
Version 6.0

24-27

24.5.3.1 The Syntactic Parser Module

Purpose
The Syntactic Parser checks the field 10 for legal syntax and separates the items in the field 10
by placing each of them in an array location, to be passed to the Semantic Parser. Based on
return status, the Syntactic Parser calls the semantic processor. If non-recoverable errors occur,
the Syntactic Parser passes the appropriate error code back to the Parser.

Input
In addition to the Route Processor input described in Section 24.4.3, the Syntactic Parser
requires a pointer to the element array and an indication of the array size. This array is used to
store the elements of the field 10.

Output
The Syntactic Parser returns a status code indicating whether or not the field 10 syntax is
correct. If the syntax is correct a filled element array is also returned. If no element array could
be created, an error is generated indicating that the field 10 contains a syntax error.

Processing
The Syntactic Parser operates as two inner state machines (one to check fix field syntax and one
to check route field syntax) within a larger state machine, checking the field 10 overall for legal
syntax. The route must have an odd number of fix and route tokens (including implied fixes and
routes) so that it begins and ends with a fix; route and fix identifiers must match legal patterns.
See Figures 24-9 through 24-11 for diagrams of field 10 syntax state machine, route syntax state
machine, and fix syntax state machine operation. Except in the first or last position, an empty
field is also legal.

Depending on whether it is a fix or a route field, it is known as an implied fix or an implied route.
Each token is marked with its type, e.g., latitude/longitude fix, named fix, jet route, fix-radial
route, empty (implied) route.

Each token is then placed in the element array which is passed to the Semantic Parser, through a
pointer, when the syntax check is complete. If the syntax is incorrect, an error status is returned.

ETMS System Design Document
Version 6.0

24-28

EMPTY
FIX

EMPTY

EOF

EOF

FIX

ROUTE

EMPTY

EMPTY

FIX

ROUTE

ROUTE

STOP

STOP

ROUTE

FIX

FIX
ROUTE

EMPTY

START

 Figure 24-9. Field 10 Syntax State Machine

Error Conditions and Handling
There are two types of recoverable errors associated with the Syntactic Parser. Descriptions of
each case and the respective actions taken appear below. If these actions are unsuccessful, then
the recoverable error becomes a fatal error.

 (1) Unknown fix — if not in first or last position of route, the Syntactic Parser checks
for an implied route before or after it. This error becomes fatal if one or both of
the routes around the fix are implied.

 (2) Unknown route — Syntactic Parser checks for an implied fix before or after it.
This error becomes fatal if one or both of the fixes around the route are implied.

The Syntactic Parser has one type of fatal error, which is identified by a status code message
indicating the type of error to the Parser. The message is explained as follows:

 “Can't parse this route” — illegal syntax

ETMS System Design Document
Version 6.0

24-29

5

4

3

2

1

d0

_1

5432 10_1_2_3

I

CC C

A

G

H

D D DD

F

EEEE

B

B

B

B

BB

`L’

`H’

`/’

a

a `X’

d d

`J’ d d d

`N’|`E’|`S’|`W’

`N’|`E’|`S’|`W’

`N’|`E’|`S’|`W’d d d

a`X’
a `V’

a a a

d

`F’

dd

aa
`X’

d

a

a

d d

`R’
d

d

d

d

a

A

B

C

empty_route implied route: FIX.ROUTE.FIX. .FIX

sid_star SID or STAR

hl_route Canadian route

D

E

F

j_route jet route

v_route victor route

fr_route fix radial route (fix name followed by a radial)

G

H

I

vfr VFR – visual flight rules

ti tailoring indicator

xxx incomplete route indicator

The boxed letters refer to program labels for the code that completes processing for the named fix types. Each of these labels needs a period (‘.’) or a line-
feed to be reached except for , which is only reached by a period.A

The column and row numbers refer to program labels. For example, column 2, row 0 of the diagram refers to label 20; column 2, row _1 refers to
Label 2_1; and column _2, row 1 refers to _21.

The arrow labels `N’|`E’|`S’|`W’ mean that any one of the four quoted characters will lead to the label pointed to by the arrow. That is, any one of `N’, `E’,
`S’, or `W’ will lead to label 50 (column 5, row 0) or 51 (column 5, row 1)

KEY

`N’|`E’|`S’|`W’

Figure 24-10. Route Syntax State machine

ETMS System Design Document
Version 6.0

24-30

B B B B
17 16 17 1716 16

A

B

C

B

B B

E

F

B

B

D

DD

G

71

70

72

73

74

76

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9

B

B

B

B

B

_1

a

a

a

a

a

d

d

d

d

d

`/’

d

`/’

`D’

`*’

`/’

`/’

a

a

a

a

`D’

d d d d
`/’

`/’ `/’

d

d

d

d

d

d

d

d

`/’ `*’`*’ `*’`/’ `/’

d d d d d

d d d d dd

d d d d d

d d d d d

d d d d d

d

d

d

d

`+’

d

d

d

d

`+’

a

a

a

a

`*’
`*’

`/’

`*’

a

`/’

`*’

a

`E’|`W’
`E’|`W’

`N’|`S’

A

B

C

D

E

F

G

H

I

J

K

L

empty_fix implied fix: FIX.ROUTE. .ROUTE.FIX

fix_name named fix

fix_name_star named fix followed by an asterisk

lat_long latitude/longitude

fix_name_ete named fix followed by an ete or eta

fix_name_star_ete named fix followed by * and ete or eta

fix_name_delay named fix followed by a time delay

fix_radial fix name followed by a radial (bearing)
and a distance

fix_radial_delay fix name followed by a radial
and a distance, and a delay

lat_long_delay latitude/longitude followed
by a delay

fix_radial_ete fix name followed by a radial (bearing)
and a distance, and an ete or eta

lat_long_ete latitude/longitude followed
by an ete or eta

KEY

d

Figure 24-11. Fix Syntax State Machine

ETMS System Design Document
Version 6.0

24-31

H

7575

H

HH

H

H

H

H

H H

H

H

H

H

H

I

J

K

L

7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

5

6

7

8

d

d

d

d

d

d

d

d

d

d

`/’ `/’

`/’

`D’

`D’

`+’

`+’

`+’

`+’

d

d

d

d

d

d

d

d

d d d

d d d

d

d

The boxed letters refer to program labels for the code that completes processing for the named fix types. Each of these labels needs a period (‘.’) or a line-
feed to be reached except for , which is only reached by a period and , , , and , which are only reached by a newline.A

The column and row numbers refer to program labels. For example, column 7, row 2 of the diagram refers to label 72; column 10, row 1 refers to
label 101. To make the diagram easier to read, the boxed label numbers at the top of the diagram show the character needed to get that label just above the box, rather
than on each arrow leading to the box.
The arrow labels `E’|`W’ and `N’|`S’ mean that either of the two quoted characters will lead to the label pointed to by the arrow. That is, either an `E’ or ̀ W’
will lead to label 46 (column 4, row 6).

NOTES

LKFE

Figure 24-11. Fix Syntax State Machine (continued)

ETMS System Design Document
Version 6.0

24-32

24.5.3.2 The Semantic Parser Module

Purpose
The Semantic Parser uses the grid database, a database consisting of numerous files, to identify
fixes and routes found in the field 10, to trace the path of the flight geographically, and to
identify monitored elements that path enters or crosses.

Input
The Semantic Parser requires the element array created by the Syntactic Parser. It also uses the
names of disk files into which routes, fixes, and fix-radial routes are to be written.

Output
The Semantic Parser returns a status code indicating the number of events in the event list or, if
no event list could be created, the type of error that occurred. It also builds files of fixes, routes,
and fix-radial routes, that were not located in the grid database.

Processing Overview
There are three main things accomplished by the Semantic Parser: the creation of fix_route_fix
units, a cell list, and an event list. The Semantic Parser creates an event list from the element
list in two steps . See Figure 24-12 for the data flow diagram of the Semantic Parser.

The c_route routine creates the fix_route_fix (frf) units with the help of two database lookup
routines. As c_route traverses the element array, it calls the fix lookup routine, db_lookup_fix,
for each fix-type token (odd-numbered positions in the field 10), and calls the route look-up
routine, db_lookup_route, for the route-type tokens (even-numbered positions). See Sections
24.4.3.2.2 and 24.4.3.2.3 for details about the look-up routines.

If an initial fix is not found as an airport, the c_route assumes that the flight plan refers to a flight
already in progress; i.e., not currently taking off from the ground. If the final fix is not found as
an airport, the c_route assumes that the flight plan refers to a portion of the flight that does not
include landing on the ground.

The routine that finds a pathway from fix to fix, connect_fix_fix, is called by the Semantic Parser
for each frf-unit as it is assembled. A list of grid cells is maintained between calls to this routine.
Each successful call appends cells to the list so that at the end of the field 10 there is a complete
two-dimensional path for the flight, described by the list of grid cells. See Section 24.4.3.2.5 for
an explanation of connect_fix_fix. When this list is complete, make_event_list is called and the
cell list is traversed from the beginning to make the event list. All waypoints and any monitored
elements encountered in the grid cells in the list become part of the event list. See Section
24.4.3.2.7 for an explanation of make_event_list.

ETMS System Design Document
Version 6.0

24-33

connect_fix_fix

make_event_list

find_rt_xing fix_on_route

db_lookup_fix c_route db_lookup_route

Grid Data
Base

Grid Data
Base

Element
array

FRF
unit

Grid cells

Event list

Fix
info

Two
routes

Crossing
point

Bend
point

Fix &
route

Route
info

Cell info

Aircraft type

Profile info

Route info

Fix name

Flight record

Fix info

Route name

Route info

 Figure 24-12. Data Flow of the Semantic Parser Module Data Flow

The Semantic Parser calls two other routines to allow it to create frf-units. When an implied or
unknown fix falls between two routes, the find_rt_xing subroutine creates an unnamed fix at the
latitude and longitude where the two routes intersect. See Section 24.4.3.2.4 for more
information on find_rt_xing. The other routine needed to complete frf-units, fix_on_route, bends
a route to a fix. If one of the fixes specified in an frf-unit is not in a grid cell the specified route
passes through, an unnamed fix is created on the route in the cell closest to the specified fix. See
Section 24.4.3.2.6 for more about fix_on_route.

ETMS System Design Document
Version 6.0

24-34

24.5.3.2.1 The c_route Routine

Purpose
The c_route routine handles the transition from the Syntactic Parser to the Semantic Parser. It
creates the fix_route_fix units from the element array generated by the Syntactic Parser. It also
fills parts of the oldfix record used in db_lookup_fix (Section 24.4.3.2.2).

Input
The c_route routine uses a pointer to an element array which is filled with the fixes and routes
that were extracted from the field 10 by the Syntactic Parser. C_route also receives fix and route
information from look-up, crossing, and bending routines.

Output
C_route passes fix and route names, extracted from the element array, to look-up routines. It
creates and passes fix_route_fix units to connect_fix_fix (Section 24.4.3.2.5). It also passes the
oldfix record to db_lookup_fix to aid in the accuracy of choosing fixes correctly.

Processing
First, c_route receives a pointer to the element array. It then takes elements from the array, one
by one, and passes their names to appropriate look-up routines. Once two fixes and a route are
successfully looked up, a fix_route_fix unit is generated. The route may or may not be implied.
This unit is passed to connect_fix_fix to generate a cell list.

As c_route works its way through the element array and calls the look-up routines, it is
constantly updating the oldfix record to aid in the db_lookup_up routine's selection of fixes.

In the midst of generating these fix_route_fix units it may be determined that a route crossing is
necessary and a call is made to find_rt_xing (Section 24.4.3.2.4). It is also possible that a fix
may not be directly on the path of an associated route. In this case a call is made to fix_on_route
(Section 24.4.3.2.6) to attempt a bend. If these routines are successful, a fix is passed back to
c_route in order for it to generate two new fix_route_fix units, one from the first original fix to
the new fix and one from the new fix to the second original fix.

Error Conditions and Handling
The c_route routine has two types of fatal errors, each of which is identified by a status code
message indicating the type of error to the Semantic Parser. The messages are explained below:

 (1) “Can't open route” — syntax was legal, but either so many fixes or routes were
unknown that the route got shortened to nothing, or the initial fix was unknown.

 (2) “Encountered route or fix type not supported” — syntax was legal, but the type of
element was unknown or incorrect for that location in the flight path.

ETMS System Design Document
Version 6.0

24-35

24.5.3.2.2 The db_lookup_fix Routine

Purpose
The db_lookup_fix routine determines whether the fix is known to the grid database (Figure
24-13), if it has duplicates, and if it is within the logical range of the flight path. If so, it fills in
the fields of the fixid record (Table 24-4) such as latitude/longitude, row, and column on grid
cell, index, magnetic variation, etc. See Figure 24-14 for an illustration of the logical flow of
db_lookup_fix.

Input
The db_lookup_fix routine expects a pointer to a fixid-type record with at least the id_type field
and either the name or the latitude and longitude fields filled in. It also expects a pointer to an
oldfix-type record (see Table 24-6) that contains information about the flight.

Output
The routine passes back values of true or false based on whether the fix is found. If a fix is
found, all fields of fixid type record are filled in, including id_type bits to indicate the fix's type
and its “found” status (to prevent duplicated effort in potential future look-ups).

Processing
First, db_lookup_fix checks the id_type field of the fixid record to see whether the bit that
indicates that this fix has already been looked up successfully has been set. If so, the routine
exits, returning a value of true .

If the id_type indicates that this is a latitude/longitude fix, the routine computes the grid cell of
this latitude/longitude and looks for a fix with the identical latitude/longitude in that cell. If one
is found, the fix_verify routine is called to verify the fix is at a valid location, with respect to the
bearing and distance of the flight path. If it is, the fields in the fixid record are filled and the
routine exits, returning a value of true . If the fix is not confirmed, and determined to be out of
range, the routine exits, returning a value of false, and the fix is eventually tossed.

If a fix with the identical latitude/longitude is not found, the fix lookup routine creates an
unnamed fix, calls fix_verify to confirm the unnamed fix's location, in respect to the flight path.
If verified, the routine fills in the fixid fields and exits, returning a value of true . If the fix is not
verified, and determined to be out of range, the routine exits, returning a value of false, and the
fix is eventually tossed.

ETMS System Design Document
Version 6.0

24-36

ETMS System Design Document
Version 6.0

24-37

ARTCC

sectors

routes

center_boundary

sh_module_bound

hi_module_bound

lo_module_bound

places (fix_type)

places
(airport_type)

place

other_places

route

other_routes

top_alt

nxt_hi_alt

nxt_low_alt

sector

bot_alt

cellcount

arcs

nodes

modules

stype

sector

monitor

ID

name name

struct_route_hdr

nxtseg

position

cel_tail

cel_head

tail_fix

cellcount

tail_type

pad

monitor

ext_index

ID

top_alt

nxt_hi_alt

nxt_low_alt

sector

bot_alt

name

cellcount

arcs (future)

node (future)

modules

stype

sector

monitor

ID

ctype

ID

name

cells

pad

cellcount

center

monitor
monitor

name

bcn_type
source

nxt_fix

long

lat

cellcol

cellrow

magvar

usage

alt

center

ftype

ID

colcolcolcol

rowrowrow row

node

other_nodes

other_arcs

arc

segment segment segment segmentsegmentsegment segment

grid cell

ARTCC
fix

place

other_places

place

other_places

cellcol

name

pad

source

long

lat

cellrow

atype
center

monitor

ID

airport modules

nxt_module

cellcount

cells

bot_alt
top_alt

name

colcolcolcol

rowrowrow row

sector

sector
route_segment

place

other_places

nxt_hi_alt

nxt_low_alt

sector

bot_alt

top_alt

route

other_routes

Figure 24-13. Grid Database

ETMS System Design Document
Version 6.0

24-38

Create unnamed
fix

fix_verify

Initialize
Variables

Set result
to true

Verified?

Fix in cell?

On grid?

Lat/Long id?

Found bit
set?

a b

yes

no

no

yes

no

no

yes

yes

no

yes

Return

Begin

Return

Figure 24-14. Sequential Logic for the db_lookup_fix Routine

ETMS System Design Document
Version 6.0

24-39

c

d

a b

Look up fix

Look up airport

Fill fields &
Set result to true

Fill fields, update
the flight information
record, & set result

to true

Found?

Found?

Airport id?

yes

no

yes

no

yes

no

Return

Return

 Figure 24-14. Sequential Logic for the db_lookup_fix Routine (continued)

ETMS System Design Document
Version 6.0

24-40

d

Found?

Verified?

Fix saved?

Duplicates?

Verified?

Write to fix not
Found file

fix_verify

Create unnamed
fix

Look up airport

Fill fields &
Set result to true

Save fix id

fix_verify

c

no

yes

no

yes

yes

no

no

yes

no

yes

Return

 Figure 24-14. Sequential Logic for the db_lookup_fix Routine (continued)

ETMS System Design Document
Version 6.0

24-41

 Table 24-6. oldfix Data Structure

oldfix

Library Name: routeproc Element Name: gridbd_interfaceh

Purpose: Stores information about a flight needed to determine the correct fix

 Data Item Definition Unit/Format/Range Var. Type

 lat Latitude of last accepted

fix
 radians float

 long longitude of last accepted

fix
 radians float

 routeflag type of element that
precedes the presnt fix 1 – 16 long

 rte_name name of the route that
precedes the present fix alphanumeric string10

 routeflag2 type of element that
follows the present fix 1 – 16 long

 rte_name2 name of the route that

follows the present fix

 alphanumeric string10

 f_direct bearing of the flight 0 – 359 long

 a_dist actual proposed distance nautical miles float

 c_dist cumulative distance of the

flight

 nautical miles float

 dep-name departure airport latitude alphanumeric string10

 dep-lat departure airport latitude radians float

 dep-long departure longitude radians float

 arr_name arrival airport name alphanumeric string10

 arr_lat arrival airport latitude radians float

 arr_long arrival airport longitude radians float

ETMS System Design Document
Version 6.0

24-42

If the id_type indicates that this is an airport, the name is hashed into the airport mapped files. If
the airport name is not found, it is hashed into the fix mapped files. If the name is found either
as an airport or a fix, the fields of the fixid record are filled, and the routine exits returning a
value of true . If the id_type initially indicates an airport, fix_verify is not called.

If the id_type indicates that this is a named fix, the name is hashed into the fix mapped files. If
the name is found, fix_verify is called to confirm the fix's location, with respect to the bearing
and distance of the flight. Whether it was confirmed in fix_verify or not, the fix is then checked
for duplicates. If a fix was confirmed in respect to the flight path, it is saved, and any duplicate
must essentially be in a better location to be selected over the previously saved fix. When no
duplicates remain, the confirmed fix (with the best location regarding the flight) will be saved to
use in the flight plan. The fixid fields are filled; the routine exits and returns a value of true .

If no fix was found or confirmed, the named fix is hashed into the airport mapped files. If an
airport exists with this name, an unnamed fix is created, and a call is made to fix_verify to
confirm the unnamed fix's location regarding the flight path. If confirmed, the fixid fields are
filled; the routine exits, and it returns a value of true .

The fix_verify routine is used to confirm a fix location with respect to the bearing and distance of
the flight. This routine increases the accuracy of fixes being accepted. In order to be accepted,
not only must the fix exist in the grid database, it also must pass distance and bearing checks.
This allows flight paths to be more accurate, by choosing between good and bad fixes. The
fix_verify routine uses the oldfix record to obtain the flight information. It compares the current
fix to a previously accepted fix in the flight path. If the distance and bearing of these fixes are
within the limits of the flight's distance and bearing, the fix will be accepted. Any other
duplicate fixes that follow must also fall within these limits, but must be closer along the flight
path than a previously accepted duplicate. All duplicate fixes will be checked before any one can
be used in a frf-unit.

Error Conditions and Handling
If no fix is found, the db_lookup_fix routine returns a value of false. It also writes the fix name
into the fixes-not-found file, marking it with an asterisk if it was looked for as an airport and an
exclamation point if it was found but not verified. The departure and arrival airports are also
written to the file to help determine where the fix was trying to be used. This file aids in keeping
the grid database up to date with the flight plans being received.

24.5.3.2.3 The db_lookup_route Routine

Purpose
The db_lookup_route routine determines whether a named route or a fix-radial route is known to
the grid database. The route lookup routine fills in unfilled fields in the routeid record (Table
24-5), such as the internal index and subtype number fields.

Input
The db_lookup_route routine uses a pointer to a routeid type record with at least the id_type
field and the name filled in.

ETMS System Design Document
Version 6.0

24-43

Output
Db_lookup_route passes back values of either true or false based on whether the route has been
found. If a route is found, all fields of routeid type record are filled in, including an id_type bit
to indicate that this route has been successfully looked up (to prevent duplicated effort in
potential future lookups).

Processing
First, db_lookup_route checks the id_type field of the routeid record to see whether the “route
was found” bit is set. If so, the routine exits, returning a value of true .

Otherwise, the route look-up routine hashes the name into the structured routes mapped file. If
the route name is found, the fields of the routeid record are filled, including the bit in id_type
that indicates a successful look-up; the routine exits, and returns a value of true .

Error Conditions and Handling
If the route is not found, the routine returns a value of false. If it is not a fix-radial route, its name
is entered into the routes-not-found file. A fix-radial route that is not found in the database is
created and entered into a text file, fix-radial file, to be added to the database later.

24.5.3.2.4 The find_rt_xing Routine

Purpose
The find_rt_xing routine is used to find the point at which two routes intersect. It is called when
the fix between two known routes is either implied or unknown. It creates an unnamed fix at the
latitude/longitude where the two routes intersect.

Input
Find_rt_xing receives a pointer to the fixid record (to fill if the route intersection is found) and
receives pointers to the routeid records. Also passed are two arguments which are now obsolete:
a pointer to a fix around which to search for the route intersection, and an integer indicating the
radius length, measured in numbers of grid cells.

Output
Find_rt_xing returns a status code indicating whether an intersection was found. If one was
found, the fields of the fixid record are filled in.

Processing
Starting at the last known grid cell (saved in the route_context fields prevrow and prevcol),
find_rt_xing looks for the first route, searching first on the general bearing that the flight path is
taking. If the first route is found, the routine searches along the first route for the second route.
Find_rt_xing starts searching at the point closest to the last known location, looking first in the
direction of the general bearing of the flight path, until it finds the second route or reaches the
end of the first route. If the second route is not found anywhere along the first route in the

ETMS System Design Document
Version 6.0

24-44

direction of general bearing, the search starts again at the initial point, going in the opposite
direction toward the other end of the route. If the second route is found, the routine fills in the
fields of the fixid record with the latitude and longitude of the grid cell in which the intersection
is located.

The intersection of two fix-radial-routes can be calculated to get this latitude and longitude even
if the two routes do not exist as entries in the database. Otherwise, the intersection of any two
routes in the database can be found (if they do intersect). Intersections between routes in the
database and fix-radial-routes not in the database are not calculated. If an intersection is
successfully found, the unnamed fix created becomes one end of an frf-unit.

Error Conditions and Handling
The find_rt_xing routine has one type of fatal error, which is identified by a status code message
indicating the type of error to the Semantic Parser. The message is explained as follows:

“No route intersection found” — routes specified do not intersect.

24.5.3.2.5 The connect_fix_fix Routine

Purpose
The connect_fix_fix routine calls a number of routines in order to create a linked list of grid cells
that trace the path of the flight. The connect_fix_fix routine is the first of two passes required to
create the event list. This pass creates the cell list from the frf-units. See Figure 24-15 for an
illustration of the logical flow used in connect_fix_fix.

Input
There are pointers to two fixid records for the two fixes to be connected, a pointer to the routeid
record of the route along which to connect them (or nil, if there is no route), pointer to the event
list array, and an index into the event list array are the input arguments to the connect_fix_fix
routine. Much information needed for successive calls to the connect_fix_fix subroutines is
saved in the route_context and evidbt records (see Tables 24-2 and 24-3).

ETMS System Design Document
Version 6.0

24-45

End of flight?Status

Status

Implied route?

Found?

make_event_list

cells_on_route

cells_in_line

Look up fixes
and route

in database

Link cell into
route context

Link cell into
route context

a

Is first fix off
the grid?

Is second fix off
the grid?

no

yes0

positive

no

yes

no

yes

negative

positive
or 0

yes

no

yes

no

Return

Return

Return

Begin

 Figure 24-15. Sequential Logic for the connect_fix_fix Routine

ETMS System Design Document
Version 6.0

24-46

Last cell
And not 1st

cell

Save first fix in
saved element list

a

End of flight?

First call for
this flight?

make_event_list

Save last fix in
saved element list

Loop through
cell list to last cell

Loop through
cell list to last cell

Link cell list and saved
element list with flight

cell and element
list

Status (# cells
in cell list)

yes

no

1no

more than 1yes

yes

no

Return

 Figure 24-15. Sequential Logic for the connect_fix_fix Routine (continued)

ETMS System Design Document
Version 6.0

24-47

Output
Connect_fix_fix returns a status code. A positive number indicates the number of grid cells
connected between the two fixes and route (if specified) passed into the routine; a negative
number indicates the type of error that occurred. It also passes a linked list of grid cells to
make_event_list.

Processing
The connect_fix_fix routine first checks an frf-unit to see if both fixes and the route (if specified)
are known to the database by calling the fix and route look-up routines (Sections 24.4.3.2.2 and
24.4.3.2.3).

Next, it creates a linked list of grid cells between the two fixes that need to be connected. If no
route is specified, the linked list is created by calling the cells_in_line routine (Section
24.4.3.2.5.1). The cell coordinates are saved in linked cel_link_lst records (see Table 24-7).

 Table 24-7. cel_link_lst Data Structure

cel_link_lst

Library Name: db_rteproc_openlib Element Name: griddb.decl.typesh

Purpose: Used to store linked lists of gridcells

 Data Item Definition Unit/Format/Range Var. Type

 cel
 substructure with additional

data fields
 - cel_lst

 waypoint
 Is this a waypoint cell along a

flight path?
 0 – 1 short

 pad just a pad for alignment - short

 fixoffset offset into map file for fix at
the waypoint range depends on file size long

 link pointer to next record of
this type - cel_link_ptr

If a route has been specified, connect_fix_fix determines the cell list by calling the
cells_on_route routine (Section 24.4.3.2.5.2; see Table 24-8).

At the end of each frf-unit, connect_fix_fix sets the corresponding cell in the waypoint field of
cel_link_lst, and if the tail_type of the route_segment is a fix, the tail_fix is copied to the cell
list's fixoffset field, which is used later to add waypoint fixes to the event list. If the second cell
has not been reached, the next segment in the structured_route is used to find the
route_segment that continues the route, and its cells are added to the cel_link_lst. This
continues until the goal cell is reached.

ETMS System Design Document
Version 6.0

24-48

 Table 24-8. cel_ lst Data Structure

cel_ lst

Library Name: db_rteproc_openlib Element Name: griddb.declarationsh

Purpose: Used to represent a single tridcell’s coordinates

 Data Item Definition Unit/Format/Range Var. Type

 row row coordination in grid 0 – 359 short

 col column coordinate in grid 0 - 839 short

Using either the cells_in_line method or the cells_on_route method, connect_fix_fix stores the
distance along the cell list in a global variable as it goes along. In lists created by cells_in_line,
this is a single distance from start to finish. In lists created by cells_on_route, the distances are
calculated from start to finish of each part of each route segment that is added to the list; they are
added together to get the total distance along that part of the route.

Next, connect_fix_fix loops through the cells on the cell list (if any), saving the fix tokens
associated with the beginning and the end of the frf-unit in a linked list of events_to_make
records (Table 24-9). Connect_fix_fix “hooks in” both ends of the cell list and both ends of the
events_to_make list to the route_context record.

 Table 24-9. events_to_make Data Structure

events_to_make

Library Name: routeproc_openlib Element Name: griddb.interfaceh

Purpose: Used to store lists of airports and fixes for which to make events

 Data Item Definition Unit/Format/Range Var. Type

 element
 pointer to fix or airport for

which to make an event
 - fixid_ptr

 link
 pointer to next record of this

type
 -

 events_to_make

_ptr

If connect_fix_fix is working on the last frf-unit for the field 10 in question (indicated by the
id_type code in the fixid record of the second fix), then it calls the make_event_list routine
(Section 24.4.3.2.7) to create the event list.

ETMS System Design Document
Version 6.0

24-49

24.5.3.2.5.1 The cells_in_line Routine
If the distance between the two fixes is less than approximately 180 nautical miles, the
cells_in_line subroutine selects the cells by calculating the slope between the two fixes to get a
series of row and column coordinates, which are saved in linked cel_link_lst records (see Table
24-7). If the distance exceeds 180 n.m., the greatcircle_connect subroutine determines the row
and column coordinates by calculating the great circle between the two fixes. Cells_in_line also
saves these row and column coordinates in the cel_link_lst.

24.5.3.2.5.2 The cells_on_route Routine
The cells_on_route subroutine starts in the grid cell of the first fix, getting the reference to the
route segment that passes through that cell. It uses the position field of the route_segment
record to find the point along the structured route where this route segment falls. Starting with
the row and column of the first fix, cells_on_route puts cells in the cel_link_lst by tracing along
the route_segment record's list of cels (see Table 24-7) in the direction from the cell which
contains the first fix to the cell which contains the second fix.

Error Conditions and Handling
There is one type of recoverable error associated with the connect_fix_fix . The following
describes the error and its respective action taken.

Fix not on route — if a fix is not exactly on the specified route, then the
fix_on_route routine is called. The route is bent and the closest point on the route
to the fix is found. This point is then used as the other fix in the frf-unit,
connecting to the original fix with an implied route. After this frf-unit is
successfully connected, another frf-unit is made to connect the newly made fix
with the other fix in the original frf-unit along the route.

If the action is unsuccessful, the recoverable error could become a fatal error.

The connect_fix_fix routine has two types of fatal errors, each of which is identified by a status
code message indicating the type of error to the Semantic Parser. The messages are explained
below:

 (1) “Memory full” — memory was too full to allow the route to be processed

 (2) “Error after route bent” — grid cells could not be connected after a route has been
bent to a fix

24.5.3.2.6 The fix_on_route Routine

Purpose
When the fix specified in the field 10 is not exactly on the specified route, fix_on_route attaches
the fix to the route by bending the route within a specified radius limit to meet the fix. See
Figure 24-16 for an illustration of the logical flow used in fix_on_route.

ETMS System Design Document
Version 6.0

24-50

Acceptable
distance?

Find the fix on
the route closest

to the present
fix

a

Duplicate
routes?

Acceptable
distance?

Fix off grid?

Sid or Star?

Determine the
closest airport and
calculate distance

Save coordinates
and create unnamed
fix to use to connect

Save airport’s
attributes

Save fix’s
attributes

Fix and route in
database?

Fix in a cell
that the route

passes
through

no

yes

no

no

yes

yes

no

yes

yes no yes

no

yes

no

Begin

Return

Return

Return

Return

Figure 24-16. Sequential Logic for the fix_on_route Routine

ETMS System Design Document
Version 6.0

24-51

Fix in range?

Check the cells
around the route

a

Create an unnamed
fix that is on the

route and closest to
the fix

no

yes

Return

Figure 24-16. Sequential Logic for the fix_on_route Routine (continued)

Input
Input to fix_on_route includes a pointer to the fixid record of the fix to which the route must
bend, a pointer to the routeid record of the route to bend, an integer indicating the radius length,
measured in numbers of grid cells, to search for the route, and a pointer to the fixid record to fill
if the route is found.

Output
Fix_on_route returns a value of either true or false depending on whether the route is found
within the specified radius. If the route is found, the fields of the second fixid record are filled.

Processing
If the route is a SID or a STAR, the grid cell at the end of the route that is closest to the related
airport is located and used as the new fix. If the fix to which the route needs to be bent is off the
grid, the grid cell on the route that is closest to the fix (on the edge of the grid) is found and used
as the new fix. Otherwise, fix_on_route searches around the fix within the grid cell radius limit to
find the closest grid cell that the route passes through. If one is found within the radius limit, the
fields of the fixid record are filled in with the latitude and longitude of the grid cell found.

ETMS System Design Document
Version 6.0

24-52

Next, the c_route routine creates two frf-units, one with the specified fix, an implied route, and
the newly created unnamed fix, and another one consisting of the unnamed fix, the specified
route, and the other specified fix from the original frf-unit. This bending can be done to the first
fix, the second fix, or, if necessary, to both fixes in an frf-unit.

Error Conditions and Handling
The fix_on_route routine has one type of error, which is identified by a status code message
indicating the type of error to the Semantic Parser. The text explains the message:

“Can't bend route to fix” — fix and route specified adjacent to each other in flight
plan are not within a predetermined distance

The routine returns a value of false and the status code, if the route can't be bent to the fix.

24.5.3.2.7 The make_event_list Routine

Purpose
The make_event_list routine creates the list of waypoints and monitored events once the list of
grid cells is complete. The make_event_list routine is the second pass of the flight elements
needed to create the event list. See Figure 24-17 for an illustration of the logical flow used in
make_event_list.

Input
A pointer to the event list array is passed from connect_fix_fix . Information needed for the
make_event_list routine is saved in the route_context record. Some additional input is kept in
files. The fix priority data file is read into a global array during initialization. This array is used
to determine which type of fix to use as a waypoint in the event list in the case of a grid cell with
multiple unmonitored fixes. The activetypes data file is read into a set in initialization. It is used
to save processing time by indicating whether a whole element type is unmonitored, eliminating
the need to search for events of that type.

Output
Make_event_list returns a status code. A positive number indicates the number of events on the
event list; a negative number indicates the type of error that occurred. The event list is filled with
records describing all the waypoints and monitored events in the flight.

Processing
Make_event_list first calls assign_a_profile (Section 24.4.4.2) to initialize the aircraft profile
information for this flight. Then, starting at the beginning of the cel_link_lst and the beginning
of the events_to_make list, make_event_list makes events for any fixes that have grid cell
coordinates matching those of the first cell in the cell list. Distances between waypoints get
added to the cumulative distance traveled along the cell list and put into the now.dist field of the
a_flight record (See Table 24-10).

ETMS System Design Document
Version 6.0

24-53

Last cell
in list?

a

Retrieve start of
saved element list,
saved flight cell list,
saved flight distance

b c

Make airport
event

get_route_events

get_center_events

get_sector_events

Make fix event

assign_a_profile

Calculate distance
between waypoints

Calculate distance
between waypoints

Get profile for this
point on path

Waypoint?

Is element a
fix?

no

yes

yes

no

no

yes

Begin

Figure 24-17. Sequential Logic for the make_event_list Routine

ETMS System Design Document
Version 6.0

24-54

Status

Get profile for this
point on path

a

d e

cb

get_route_events

get_center_events

get_sector_events

get_fix_events

Make fix event

Off grid?

Off grid?

Status
positive

negative
yes

positive negative

no

yes

no

Return

 Figure 24-17. Sequential Logic for the make_event_list Routine (continued)

ETMS System Design Document
Version 6.0

24-55

Make airport
event

Off grid?

get_sector_events

d e

get_center_events

get_route_events

Make fix event

get_fix_events

Last fix?Is last element
a fix?

yes

no

no

yes

yes

no

Distance within
tolerance?

no

yes

Return Status

Set Negative
status

 Figure 24-17. Sequential Logic for the make_event_list Routine (continued)

If there is more than one grid cell in the cell list, make_event_list calls get_fix_events,
get_sector_events, get_center_events, and get_route_events to make any appropriate events for
that grid cell. For all subsequent grid cells in the list, including the last one, the get_profile_data
routine updates values in the a_flight record and calls get_altitude_value (Section 24.4.4.1),
which is the routine that provides altitude and velocity data for each segment of the flight path.

For all grid cells between the first and the last, make_event_list continues to add distances
between waypoints, make any fix event found in the events_to_make list that corresponds to the
current cell, and make fix events for any fixoffsets found in the cell list itself. The latter are the
offsets found at the waypoints in named routes, which were stored in the cell list when the paths
along the routes were traced. When a specific fix is known, such as one saved in the events_to_
make list or as a fixoffset in the cell list, that fix is added to the event list. When no specific fix
is known, such as at a waypoint defined by an unnamed fix (such as a route intersection),
make_event_list calls get_fix_events.

ETMS System Design Document
Version 6.0

24-56

 Table 24-10. Flight Record Data Structure

Flight Record

Library Name: Profile_openlib Element Name: Profile.h

I/O by function+

Data
Item

Definition Unit
Legal
Range

Var.
Type

F_1 F_2 F_3

 flt_id
 flight identifier (e.g.,
AAL123)

 array[1…10]
of char | -- --

 filed_fz_onground

 indicates disposition of
the filed Field 10
Field 10 filed on grnd=T
Filed in air=F

 T or F

 Boolean

 |

 --

 --

 civ
 indicates if the aircraft is
civilian=T or military=F T or F Boolean O | --

 runaway

 indicates that flight
errors or inconsistencies
are severe & fatal=T
 No major problem=F

 T or F

 Boolean

 O

 --

 --

 dsg_actual
 actual designator taken
from the FZ

 array[1…4]
of char | -- --

 aircraft_index

 index indicating a record
in the Aircraft_Descriptor
Map which describes the
given flight

 -1 to

 max_plane_ty
pe

 short

 O

 --

 --

 dsg_index

 index indicating the par-
ticular template aircraft
assigned to this flight

 1 to tot_tem-

plates

 short

 O

 |

 |

 ascent_index

 index indicating the par-
ticular ascent profile for
this flight

 1 to
max_ascent_p

ro-files

 short

 O

 |

 |

 descent_index

 index indicating the par-
ticular ascent profile for
this flight

 1 to
max_descent_

profiles

 short

 O

 |

 |

 dist_total
 total distance for this
flight

 nautical
miles

 INT32 | | |

 origin_lat
 latitude of the originating
airport radians float | | |

 origin_lon
 longitude of the
originating airport radians float | | |

 dest_lat
 latitude of the destina-
tion airport radians float | | |

 dest_lon
 longitude of the destina-
airport radians float | | |

 dist_cruz

 distance from the takeoff
roll to the point at which
the aircraft achieves
cruising altitude

 nautical

miles

 INT32

 O

 |

 |

 spd_cruz

 cruising speed for this
flight

 (nautical
miles/mi
n) x 100

 INT32

 |/O

 |

 |

 alt_cruz

 cruising altitude for this
flight

 feet/100

 INT32

 |/O

 |

 |

+ F_1 indicates Assign_A_Profile, F_2 indicates Get_Altitude_Values, F_3 indicates Get_Time_Value

ETMS System Design Document
Version 6.0

24-57

 Table 24-10. Flight Record Data Structure (continued)

Flight Record (continued)

Library Name: Profile_openlib Element Name: Profile.h

I/O by function+

Data
Item

Definition Unit
Legal
Range

Var.
Type

F_1 F_2 F_3

 dist_descent

 distance from the begin
descent point to the
point where the aircraft
touches down

 nautical

miles

 0 to 160

 INT32

 O

 |

 |

 previous.time

 accumulated time from
takeoff roll to the pre-
vious location of this
flight

 minutes

 float

 --

 --

 |

 previous.lat
 latitude at the previous
location of this flight radians float O | |

 previous.lon
 longitude at the previous
location of this flight radians float O | |

 previous.dist
 previous distance along
the flight path

 nautical
miles

 INT32 O | |

 previous.phase

 flight phase at the pre-
vious location for this
flight

 flight phase
see Sec.15

 O

 |

 |

 previous.alt
 altitude at the previous
location for this flight feet/100 0 to 600 INT32 O | |

 previous.speed

 speed at the previous
location for this flight

 (nautical
miles/mi
n) x100

 INT32

 O

 |

 |

 now.time

 flying time from the pre-
vious location to the cur-
rent location

 minutes

 float

 --

 --

 O

 now.lat
 latitude at the current
location of this flight radians float | | |

 now.lon
 longitude at the current
location of this flight radians float | | |

 previous.dist
 current distance along
the flight path

 nautical
miles INT32 | | |

 now.phase
 flight phase at the cur-
rent location of this flight

 flight phase
see Sec. 15 O O |

 now.alt
 altitude at the current
location for this flight feet/100 0 to 600 INT32 O O |

 previous.speed

 speed at the previous
location for this flight

 (nautical
miles/mi
n) x100

 INT32

 O

 |

 |

 no_descent

 indicates whether or not
the descent is modeled.
ne_descent_modeled=T
descent is modeled=F

 T or F

 Boolean

 |

 |

 |

 no_descent

 indicates whether or not
the flight must land on
this call. Must land
 now=T, not land now=F

 T or F

 Boolean

 |

 |

 |

+ F_1 indicates Assign_A_Profile, F_2 indicates Get_Altitude_Values, F_3 indicates Get_Time_Value

ETMS System Design Document
Version 6.0

24-58

If there are no fixes in the cell, but this is a waypoint on the flight path, an event is added to the
event list for an unnamed fix (latitude/longitude fix) at the latitude and longitude of the center of
the grid cell. Make_event_list calls get_sector_events and get_route_events to make events based
on the altitudes retrieved in get_altitude_value. When the final grid cell is reached, first sector
and route events are made, forcing a sector and route exit, if necessary. A fix event for any
remaining fix on the events_to_make list or in the last grid cell is also made.

24.5.3.2.7.1 The get_fix_events Routine
Get_fix_events searches the grid cell to find the fix of the highest priority. The first priority is
always given to any monitored fix in the cell. If no fix is monitored, priority is determined by fix
type, with the types specified in priority order in the fix-priority file loaded during initialization.
If there is no fix in the cell, no fix is returned.

24.5.3.2.7.2 The get_sector_events Routine
For each grid cell constituting the flight route, make_event_list invokes get_sector_events once.

Get_sector_events notes what, if any, changes have occurred in the ARTCC designation from the
last grid cell to the current grid cell. It takes no action if there has been no change in the
designation. If there has been change, it takes action in accord with the following Table 24-11
Sector Event Logic.

 Table 24-11. Sector Event Logic

Sector Event Logic

 Former Cell Current Cell Action

 no entry no entry None

 no entry sector K Create entry event to sector K

 sector K sector K None

 sector J sector K Create exit event from sector J, & entry event to sector K

 sector K no entry Create exit event from sector K

A sector event is determined by the identification of sector type at the current altitude of the
flight path from the current grid cell (i.e., a superhigh sector when the flight is at a superhigh
level, a high sector when the flight is at the high level [or the superhigh level where no superhigh
sector exists], or a low sector at the low altitude level). The sector thus retrieved is first checked
to ensure that the actual altitude of the flight at that point is not below the bottom altitude for that
sector. If not, the sector is checked against the last sector the flight was in, which is identified in
the prevsect field of the route_context record. If the two sectors differ, an exit event is added to
the event list for the previous sector, if any, and an entrance event is added for the current sector,
if any.

ETMS System Design Document
Version 6.0

24-59

24.5.3.2.7.3 The get_center_events Routine
For each grid cell constituting the flight route, make_event_list invokes get_center_events once.

Get_center_events notes what, if any, changes have occurred in the ARTCC designation from
the last grid cell to the current grid cell. It takes no action if there has been no change in the
designation. If there has been change, it takes action in accordance with the following Table
24-12 ARTCC Event Logic.

 Table 24-12. ARTCC Event Logic

ARTCC Event Logic

 Former Cell Current Cell Action

 no entry no entry None

 no entry center K Create entry event to center K

 center K center K None

 center J center K Create exit event from center J, & entry event to center K

 center K no entry Create exit event from center K

NOTE: If the current grid cell is the first of the flight route, the former cell will be interpreted as a
No Entry. Also, on-grid cells which are not assigned to any ARTCC have an ARTCC
designation of No Entry. Generally, these cells are over the oceans near the U.S. coast or
over Mexico or Canada. Alaska constitutes an ARTCC but is not part of the grid.
Get_center_events does not create events for Alaska.

If no action is required, program control returns directly to the invoking routine, make_event_list.

In the cases where the ARTCC event logic warrants the creation of an entry or exit event, the
routine assigns appropriate values to certain parameters, and using them it initiates the event
creation process by invoking the routines make_event followed by add_to_evlst. It then returns to
make_event_list.

Subordinate routines define parameters such that the event to be created has the correct
properties. These properties specify the ARTCC event type, its status as neither monitored nor as
a waypoint, an index identifying the particular ARTCC, and whether the event corresponds to an
entry or an exit from a ARTCC. They also take the parameters associated with the aircraft flight
profile at the current grid cell and put them into an event list record at the proper location. The
parameters characterize the flight's state at the time of event creation specifying such items as
aircraft altitude and velocity.

No special action is taken upon flight termination. The final ARTCC is not exited simply
because the aircraft lands.

ETMS System Design Document
Version 6.0

24-60

24.5.3.2.7.4 The get_route_events Routine

For each grid cell constituting the flight route, make_event_list invokes get_route_events once.
Get_route_events determines which, if any, jet or Victor routes the flight enters or exits, and it
creates events for the event list to indicate these entries and exits. The logical flow of the
get_route_events processing is shown in Figure 24-18.

Get_route_events accesses the grid database information stored for each grid cell for the
characteristics of that particular geographical location. Any named routes passing through or
terminating in the grid cell are listed in the data set associated with the cell. Get_route_events
examines each grid cell in turn, collecting the names of any jet routes or Victor routes in the cell,
and adds those names to a list of current potential routes. Currentlist, an array of records,
provides a record for each new route name encountered. Each record contains a field holding the
current number of times that route has been sighted during the route processing.

Currentlist also stores information specifying the latitude, longitude, altitude, phase, and
velocity of the proposed route entry and predicted exit. Ultimately, the predicted exit is
subsumed by the actual exit. Get_route_events estimates entry and exit points in terms of
relative location within the flight's event list, and it updates the estimates as the flight proceeds.
It stores whatever additional information is necessary to construct an entry or exit event with the
appropriate parameters in the correct sequence.

 If a route remains unsighted for a space of several grid cells, the route name is dropped from
currentlist. If sightings accumulate enough to push the value across a threshold, the routine
creates a route entry event. When a route for which an entry event has been created fails to be
seen for several grid cells, the routine creates a route exit event.

The decision to create an entry (or exit) event occurs several grid cells after the route first (or
last) appears. Get_route_events therefore sets aside for the event creation the proper parameters
(such as altitude and latitude) associated with the actual entry or exit point. Other kinds of
events (such as a sector crossing) may intervene between the point the route entry or exit actually
occurred and the point at which the get_route_events logic becomes certain it really happened.
Get_route_events therefore inserts the route event anywhere in the event list rather than
appending it to the end of the list as is done in the other event creation routines.

Get_route_events uses several embedded subroutines in its processing. Upon successful
completion of its processing, get_route_events returns the number of route events created back to
the invoking routine, make_event_list.

Get_route_events begins with some initializations including a check to see if a new flight has
begun. If a new flight has begun, the routine sets appropriate initial values for the various fields
of the currentlist records. It does this to prevent leftover route information from a prior flight
from mingling with that generated for the current flight. If the flight is not a new one,
get_route_events detects that fact and continues without reinitializing.

ETMS System Design Document
Version 6.0

24-61

J = 1

New Flight?

a

Order Currentlist

Add New Names

Increment
Sighted Names

Null Duplicate
Route Names

Count = 0

Set Cell Params

Reinitialize

Collect names of
routes crossing

this grid cell

Begin

Figure 24-18. Sequential Logic for the get_route_events Routine

ETMS System Design Document
Version 6.0

24-62

Consider Jth
member of
currentlist

On route
already?

a

b d ec

Very Low
Altitude?

Final Cell?

value <
departure
threshold

value >
entry

threshold

On route
already?

Value = 0

Decrement Value

Next J

Yes

Yes

No

No

Yes Yes

No No

No

Yes

Yes

No

no news events generate
entry event

generate
exit event

 Figure 24-18. Sequential Logic for the get_route_events Routine (continued)

ETMS System Design Document
Version 6.0

24-63

Count=Count+1

More routes
?

c db e

Insert
exit event

Append
entry event

Insert
entry event

Append
exit event

Set
Get_Route_Events

equal to Count

Compute &
Insert

Exit Distance
& Heading

Compute &
Insert

Entry Distance
& Heading

Increment
indices

for potential
subsequent
route events

Increment J

Desired Entry
= Current

Desired Exit
= CurrentNo Yes No Yes

Create Exit EventCreate Entry Event

Yes

No

End

 Figure 24-18. Sequential Logic for the get_route_events Routine (continued)

ETMS System Design Document
Version 6.0

24-64

Get_route_events notes which jet route and victor routes appear in the particular grid cell being
traversed, and places the names of those routes into the array thiscellsnames. It sorts the names
in the cell with the discriminant of allowable altitude on the different route types, making use of
the particular flight's altitude. Victor routes occupy altitudes below 18,000 feet. Jet routes span
18,000 to 45,000 feet including the end points. Of the various types of named routes,
get_route_events actively considers only jet routes and Victor routes.

NOTE: Get_route_events could handle other route types. Only one subordinate embedded routine,
namely collect_cell_names, requires modification, if other types of routes are to be
considered.

Get_route_events ensures that a route name is only added once to the currentlist. Some grid
cells (especially at airports) duplicate route names, necessitating this action. Get_route_events
compares the route names appearing in thiscellsnames with those residing in currentlist. When
it sights a name on this grid cell already in currentlist, it increments it in value . Also, it updates
some of the other fields of the currentlist record to reflect the flight's current parameters such as
latitude and altitude. It then takes any route names which appear in thiscellsnames, but which
are not already in currentlist, and it creates for them a record in currentlist. That record
contains fields for the route name, its value, and some flight parameters.

At this point, get_route_events starts a loop in which it considers one by one each of the names
presently in currentlist.

For the first action in the loop, get_route_events decrements the value field for each (if any)
current route name's record. This ensures that routes will ultimately reduce in value to zero and
be deleted unless something occurs to offset the periodic, grid cell-by-grid cell, decrementing.

NOTE: The incrementing of value occurs previous to the loop, as described above.

Prior to beginning actual event creation, the routine takes some special actions to ensure proper
handling of flight termination. If the altitude falls below 1000 feet at the current grid cell, flight
termination logic assigns a value of zero to each route name in currentlist. The routine's logic
will subsequently close out any open routes with value of zero. This action ensures that all the
named routes associated with a flight path are closed out upon landing. If the grid cell at hand is
the final one of the linked list of cells constituting the path, the flight termination logic assigns a
value of zero to each route name in currentlist. The routine's logic will then close out any open
routes with value of zero. This ensures that all named routes are closed upon the completion of
an event list for a flight, regardless of whether the flight descends for landing, or whether the
event list is ended for other reasons.

Actual event creation begins with a check of each route name in currentlist to detect whether
any names' value has exceeded the entry threshold for creating an entry event. Event creation
logic checks the name's currentlist field onflag to ensure that the route has not already had an
entry event. If a route entry event already exists, the logic ignores the particular named route. If
the names' value exceeds the entry threshold and onflag has been false, the routine creates an
entry event.

The event creation logic examines the desired event position, which had been stored in
currentlist, and compares it with the current event list position, evpos. If the proposed new entry
event would be the most recent event, the logic appends the appropriate event to the end of the

ETMS System Design Document
Version 6.0

24-65

event list. If the desired event position is at some position earlier than that of the current event
list pointer, the logic inserts the appropriate event at the proper position in the list. For either
appended or inserted events, event creation uses the appropriate parameters from the grid cell at
which the route entry was first noted. These parameters include latitude, longitude, altitude,
phase, and velocity. Currentlist holds them.

The logic for exit events works in a manner similar to the logic for entry events. The procedures
append_exit_event, and insert_exit_event carry out roles analogous to their entry counterparts.
The logic triggers exit event creation when a currentlist's name's value declines below the exit
threshold. The logic does not attempt to exit any route that has not been entered. The logic
checks onflag to verify whether the flight has entered the route.

The event list entries include distance and bearing relative to the preceding event. When
get_route_events creates an event, it computes distance and bearing. Get_route_events takes
special care with the cases where the event is inserted into the event list rather than appended to
its end. If inserted, get_route_events recomputes distance and bearing for any events which
follow the newly created route event.

Error Conditions and Handling
The make_event_list has four types of fatal errors, each of which is identified by a status code
message indicating the type of error to the Semantic Parser. The messages are explained below:

 (1) “Error in profile data” — input data to aircraft profile routines (such as cruising
altitude and velocity, aircraft identifier) was too inaccurate to reconstruct

 (2) “Inaccurate distance” — total flight path distance as initially calculated, and later
determined in second pass through flight path, varied by more than 15 nautical
miles

 (3) “Event list full” — the maximum number of events allowed has been exceeded

 (4) “Distance too long for aircraft type” — flight distance too long for the aircraft
used

24.5.4 The Flight Profiler Module

Purpose
The purpose of the Flight Profiler is to determine phase, speed, and altitude of an aircraft at any
time during the flight.

Input
Input to the Flight Profiler is the flight record shown in Table 24-10.

Output
Output from the Flight Profiler is an updated flight record.

ETMS System Design Document
Version 6.0

24-66

Processing Overview
The Flight Profiler is mainly comprised of the two routines described on the following pages.

24.5.4.1 The get_altitude_value Routine

Purpose
The purpose of this procedure is to determine the current flight phase, speed, and vertical
position of a flight when given the current distance along the horizontal flight path as well as the
previous state of the flight.

Input
The input is passed in the flight record and is described in Section 15. A character I in the
second from the last column in the flight record table (see Table 24-10) indicates that the data
item is used as input in this procedure. The characters I/O indicate that the item is initially an
input parameter and may be altered by the procedure to function later as an output parameter.

Output
The output is passed in the flight record and is described in Section 15. A character O in the
second from the last column in the flight record table (see Table 24-10) indicates that the data
item is used as output in this procedure. The characters I/O indicate that the item is initially an
input parameter and may be altered by the procedure to function later as an output parameter.

Processing
Several important parameters along with the previous flight state determine the current altitude,
speed, and flight phase.

The logic used in this procedure is based primarily on the value of the previous flight phase for
the flight, and secondarily on the current distance along the flight path, dist_cruz (i.e., during the
ascent, the distance along the flight path at which point the flight starts to level out), and
dist_down (i.e., the distance along the flight path at which point the flight starts to descend).
Tertiary factors include such information as the current lat-lon, the origin lat-lon, the total flight
distance, get_down (i.e., a boolean input parameter that indicates whether the aircraft is in the
same grid cell as the destination airport), etc.

The flight phase value (see Section 15) at the previous aircraft location is used to determine the
possible current state according to the following transition rule. The current flight phase may
assume the value of the previous flight phase or any higher value with one exception: a flight
with a previous value of climb cannot take on the current value of level-out as diagrammed in
Figure 24-19.

ETMS System Design Document
Version 6.0

24-67

take-off

4

3

2

5 61 7

landing

level-out

enroute arrive approach

 Figure 24-19. Possible Transitions from the Previous Phase to Current Phase

While the previous phase limits the possibilities, the current distance along the flight path is then
used to determine the vertical flight orientation (i.e., ascending, flying level, or descending). The
current distance is compared against the value of dist_cruz and/or dist_down. Assuming that all
orientations are possible, the following comparison is applied: If the current distance is less than
the dist_cruz value, the flight is ascending: if it is greater than dist_cruz and less then
dist_down, the flight is now flying level; if greater than dist_down, it is descending.

After determining the vertical orientation, get_altitude_value considers various criteria to
determine the current flight phase. When the flight is ascending, the altitude and speed are
looked up in the ascent_by_dist map. The flight phase is then determined by the current altitude;
if less than FL100 the phase is set to take-off, otherwise the phase is climb. When the flight is
flying level, the altitude is set to the cruise altitude. The flight phase is determined by the straight
distance between the origin airport and the current position; if it is less than 30 nautical miles,
the phase is set to level_out (i.e., the aircraft is within the origin TCA); otherwise the phase is
enroute. The speed is set to cruise speed for en route flying but is adjusted under FAA speed
limits within the TCA. When the flight is descending, the altitude and speed are looked up in the
descent_by_dist map. The flight phase is determined by the altitude and the value of get_down:
if it is greater than FL120, the phase is arrive; if it is less than FL120, the phase is approach;
and if get_down is true, the flight phase is set to landed. Figure 24-20 describes the
get_altitude_value routine in more detail.

Error Conditions and Handling
Any prospective errors are handled by the assign_a_profile routine as described in section
24.4.4.2.

ETMS System Design Document
Version 6.0

24-68

Set current phase to level-out

a b c

Set dist_down to a very high value

Compute dist_down by subtracting
dist_descent from dist_total

Look up the current altitude
and speed using the current
distance in ascent_by_dist

Set current phase to climb

Set current alt. to alt_cruz

Set current phase to take_off

Set current phase to enroute

Is the
aircraft within

the origin
TCA

?

Is the
current dist

>= dist_cruz
and

current dist
< dist_down

?

Is the
current alt.

<FL100
?

Is the
current dist
< dist_cruz

?

Is the
previous phase

= take-off
?

Is the
descent being

modeled
?

no

yes

yes yes

no no
no

yes

yes

no
no

yes

Start

Return

 Figure 24-20. Sequential Logic for get_altitude_value Routine

ETMS System Design Document
Version 6.0

24-69

Set current phase to landing
Set current altitude to 0

Look up the current speed in
the ascent_by_dist map

b

Set current phase to arrive

Set current phase to approach

Look up the current altitude
and speed using the current
distance in ascent_by_dist

Is the
current dist

>= dist_down
and

current dist
< dist_total

?

Is the
aircraft within

the destination
TCA

?

yes yes

no

no

Return

 Figure 24-20. Sequential Logic for get_altitude_value Routine (continued)

ETMS System Design Document
Version 6.0

24-70

Set current phase to approach

e

d

a

Set current phase to climb
Look up the current altitude
and speed using the current
distance in ascent_by_dist

Set current phase to landing
Set current altitude to 0

Look up the current speed in
the ascent_by_dist map

Look up the current altitude
and speed using the current
distance in ascent_by_dist

Set current phase to arrive

Set current phase to enroute

Set current phase to level_out

Set current alt. to alt_cruz

Is the
aircraft within

the destination
TCA

?

Is the
current dist

>= dist_down
and

< dist_total?

Is the
aircraft within

the origin
TCA

?

Is the
current dist
>= dist_cruz

and
current dist
< dist_down

?

Is the
current dist
< dist_cruz

?

Is the
previous phase

= climb
?

yes yes

no no

yes

no
no

yes

yes no

yes

no

Return

Return

 Figure 24-20. Sequential Logic for get_altitude_value Routine (continued)

ETMS System Design Document
Version 6.0

24-71

Set the current
phase to arrive

g

f

d

Set the current
phase to approach

Set current altitude to
the previous altitude

Look up the current altitude
and speed using the current
distance in ascent_by_dist

Set current altitude to alt_cruz

Set current phase
to enroute

Set current phase
to level_out

Set current phase to landing
Set current altitude to 0

Set the current speed to the
landing speed in the descent_

by_dist map

Is the
previous phase

= level_out
?

Is the
aircraft in the

last grid cell of
the route

?

Is the
current dist
< dist_down

?

Is the
aircraft within

the origin
TCA

?

Is the
current dist
< dist_total

?

Is the
current altitude

> previous
altitude

?

Is the
aircraft within

the destination
TCA

?

yes no yes yes

no yes no no

no

no

yes

no

yes

Return Return

 Figure 24-20. Sequential Logic for get_altitude_value Routine (continued)

ETMS System Design Document
Version 6.0

24-72

Set current phase to landing
Set current altitude to 0

Set the current speed to the
landing speed in the descent_

by_dist map

f

Is the
aircraft in the

last grid cell of
the route

?

Set current phase to enroute
Set current altitude to alt_cruz

Look up the current altitude
and speed using the current
distance in ascent_by_dist

Set current altitude to
the previous altitude

Set the current
phase to approach

Set the current
phase to arrive

Is the
current dist
< dist down

?

Is the
current dist
< dist total

?

Is the
current altitude

> previous
altitude

?

Is the
aircraft within

the destination
TCA

?
yes

no

yes

no

no

no

yes

yes

yesno

Return

Return Return

 Figure 24-20. Sequential Logic for get_altitude_value Routine (continued)

ETMS System Design Document
Version 6.0

24-73

Set current speed to the speed limit
(see speed limit procedure)

Is the
current phase

= level_out
and

current speed
< speed limit

?

yes

no

c
e
g

Return

 Figure 24-20. Sequential Logic for get_altitude_value Routine (continued)

24.5.4.2 The assign_a_profile Routine

Purpose
This procedure has two purposes: to check for inconsistencies and errors in the input values of
the flight record (see Section 15), and, if the data are sufficiently consistent, to initialize the
profile parameter values. These values will be used by later profile procedures to compute flight
phase, altitude, speed, and time values for the flight.

Input
The input is passed in the flight record and is described in Section 15. A character I in the third
from the last column in the flight record table indicates that the data item is used as input in this
procedure. The characters I/O indicate that the item is initially an input parameter and may be
altered by the procedure to function later as an output parameter.

ETMS System Design Document
Version 6.0

24-74

Output
The output is passed in the flight record and is described in Section 15. A character O in the
third from the last column in the flight record table indicates that the data item is used as output
in this procedure. The characters I/O indicate that the item is initially an input parameter and
may be altered by the procedure to function later as an output parameter.

Processing
The sections below describe the major tasks involved in assigning an ascent and descent profile
and establishing profile parameter values for a flight. A flowchart is presented in Figure 24-21
to show the sequential logic for this procedure.

Characterize the Aircraft. As described in the Aircraft Dynamics Modeling section (see
Section 23) there are several levels in characterizing an aircraft. At a gross level there are seven
grp categories which include pistonprops, turboprops, large commercial jets, etc. Each has a
relatively wide performance envelope. At a lower level there are 44 aircraft templates, and each
is associated with a grp category. Each template is a popular aircraft model and has a narrower
performance envelope than those associated with the grp categories. An aircraft template is
associated with one or more ascent profiles, each of which is dependent on the total distance of
the flight. At the lowest level a designator describes a specific aircraft model.

Currently, there are 800 designators described in the Aircraft_Descriptor map, although there
are more which have not yet been included. The record fields of the map show that each
designator is described in terms of its grp category and the index value of its template aircraft.

The aircraft used in the flight is characterized through the use of a binary search algorithm that
matches the input designator value (i.e., dsg_actual) against the designator values in the
Aircraft_Descriptor map (i.e., dsg). When a correct match is made, the template value and grp
value can be used, in part, to determine the ascent and descent index, respectively. If the value
of the input designator cannot be found, a best guess procedure is employed to characterize the
aircraft used in the flight.

ETMS System Design Document
Version 6.0

24-75

Use alt_cruz and spd_crz in the
Best_Guess_Dsg proc to get
dsg_index, aircraft_index, civ

and descent_group

a

Is spd_crz
<= 0

?

Is spd_crz
>= 4096

?

Is alt_crz
<= 0

?

increment number of errors
set type of error in the error array

set the runaway flag

increment number of errors
set type of error in the error array

set the runaway flag

increment number of errors
set type of error in the error array

set the runaway flag

Look up the correct dsg record to
get dsg_index, aircraft_index, civ

and descent_group

Is the
dsg_actual

value in the Aircraft
Descriptor_Map

?

no

yes

yes

yes

yes

no

no

no

Start

Figure 24-21. Sequential Logic for assign_a_profile Routine

ETMS System Design Document
Version 6.0

24-76

b

a

compute the flight length category using:
dist_total.

look up the ascent_index in the Profile_Index map using:
dsg_index and flight length category.

compute alt_index using alt_crz

increment number of errors
set type of error in the error array

adjust the ascent_index

increment number of errors
set the runaway flag

set type of error in the error array

increment number of errors
set type of error in the error array

limit spd_crz to 400 kts

increment number of errors
set the runaway flag

set type of error in the error array

Is
alt_index

beyond the
limit

?

Is the
ascent_index

inconsistent. (i.e., flt_
len_cat too high for the

type of aircraft)
?

Is aircrft
propeller driven
and spd_cruz

>400 kts
?

Is
total_dist

max_range_limit
for that

dsg_index
?

yes

yes

yes

yes

no

no

no

no

Figure 24-21. Sequential Logic for assign_a_profile Routine (continued)

ETMS System Design Document
Version 6.0

24-77

Can
this aircrft

attain filed alt.
(i.e., dist. cruz

>0)
?

Look up the distance to level flight
(i.e., dist_cruz) in the Ascent_by_Alt map

using the ascent_index and alt_cruz.

c d

b

increment number of errors
set type of error in the error array

Initialize lat, lon, and distance
for previous and now record

increment number of errors
set type of error in the error array

adjust the dist_cruz value

Is
alt_crz < FL100

and
spd_crz > speed

limit
?

Is FZ
filed on the

ground
?

yes

no

yes

no

no

yes

Figure 24-21. Sequential Logic for assign_a_profile Routine (continued)

ETMS System Design Document
Version 6.0

24-78

Is dist_cruz
< (dist_cruz +
dist_descent)

?

Look up dist_descent in the
Descent_by_Alt map using

alt_cruz

c

e

d

For previous and current records do:
Set flight phase to takeoff

Set altitude to 0
Set speed to 6 kts

Set dist_cruz to 0

For previous and current records do:
Set flight phase to enroute

Set altitude to alt_cruz
Set speed to spd_cruz

Decrement the alt_index
Recompute dist_cruz

Recompute dist_descent
Set the highflier flag

Set dist_descent to 0
(i.e., length of descent)

Is the
descent to
be modeled

?

Is
dist_total

> 0 ?

no

yes

yes

no

yes

no

Figure 24-21. Sequential Logic for assign_a_profile Routine (continued)

ETMS System Design Document
Version 6.0

24-79

compute mach value using:
alt_cruz and spd_cruz

e

f g

Increment number of errors
Set type of error in the error array

Set the runaway flag

Increment number of errors
Set type of error in the error array

set descent_index to 1

set descent_index to 2

set descent_index to 3

set descent_index to 4

set descent_index to 9
Is the

aircrft propeller
driven ?

Is
highflier flag

set ?

Is
dist_total

< o ?

Is mach
>= .825

?

Is mach
>= .775

?

Is mach
>= .725

?

Is the
aircrft heavy_

com_jet, fighter
or big_mil_jet

?

no

no

no

no

yes

yes

yes

yes yes

yes

yes

no

no

no

Figure 24-21. Sequential Logic for assign_a_profile Routine (continued)

ETMS System Design Document
Version 6.0

24-80

Is mach
>= .725

?

For each type of error found,
write a record describing that type
in the data/profile.txt file

Look up the templ_wrd value in the
template_dsg map using the dsg_index

Write a record in the data/profile.txt listing:
flt_id, dsg_actual, templ_wrd, civ,
alt_cruz, spd_cruz, total_dist.

f g

set descent_index to 8

set descent_index to 7

set descent_index to 6

set descent_index to 5

Is the
aircrft a large_

com_jet
?

Is mach
>= .775

?

Is mach
>= .825

?

Are there
any errors

?

yes

no

yes

no

no

no

no

yes

yes

yes

Return

Figure 24-21. Sequential Logic for assign_a_profile Routine (continued)

ETMS System Design Document
Version 6.0

24-81

When the flight designator cannot be found in the Aircraft_Descriptor map, the cruising speed
and altitude values are used to guess an appropriate template aircraft value. Based on Figure 1-1
in “Design for the National Airspace Utilization System” (FAA SRDS, June 1962), a simplified
set of disjoint performance envelopes were established. The boundaries of the envelopes may be
comprised of constant altitudes, indicated airspeeds or mach numbers, and each of these
boundary constructs is a function of the cruising speed and altitude. Also, each of the seven
envelopes is associated with a grp and template value. Thus, the cruising speed and altitude of a
flight matches one to one with a template-grp combination. The best guess matching procedure
is illustrated in Figure 24-22.

Prepare Ascent Parameters. In this task the flight is assigned an ascent profile. An ascent
profile mathematically describes the take-off and climb trajectory of the flight. For each ascent
profile there are two relationships, which are inversely related to each other via a table: given the
distance along the flight, one can find the altitude; conversely, given the altitude, one can find
the distance, speed, or time along the flight.

There are 128 ascent profiles; each is associated with an aircraft template and total flight distance
range combination. Assign_a_profile assigns the ascent profile by first determining one of seven
flight distance categories using the categorize_length procedure. The index of the template
aircraft (dsg_index) along with the distance category value are used to look up the ascent_index
value in the Profile_Index map.

If the flight's take-off is to be modeled, the distance along the flight path to the leveling out point
(i.e., dist_cruz) must be computed. Assign_a_profile calculates this parameter by computing a
cruising altitude index and using that to look up the dist_cruz value from the ascent_by_alt
map. Also, the sub-record fields of the flight record (see Section 15) are set appropriately for
take-off (e.g., altitude = 0, speed = 10, phase = takeoff). If the flight take-off is not to be
modeled, the dist_cruz value is set to zero and the sub-record fields are set for en route flight.

Prepare Descent Parameters. In this task the flight is assigned a descent profile. A descent
profile mathematically describes the arrival and approach trajectory of the flight. As described in
Section 15, for each descent profile there are two relationships which are inversely related to
each other via a table: given the distance along the flight, one can find the altitude; conversely,
given the altitude, one can find the distance, speed, or time to the landing.

ETMS System Design Document
Version 6.0

24-82

100 200 300 400 500 600

FL100

FL 200

FL300

FL400

FL500

FL600

true airspeed (knots)

.6 mach .9 mach

160 ias 240 ias

400 ias

Flight Levels

big_mil_jet KC35

(high performance) large_com_jet LR25

large_com_jet B727

turboprop L382

turboprop L382

(pressurized) piston prop DC7

piston prop

C150

piston prop

C337

large_com_jet B727

(single engine)
(multiple
engine)

(100s of 100 ft.)

big_mil_jet KC35

Figure 24-22. “Best Guess” Procedure for Assigning an Aircraft Template

ETMS System Design Document
Version 6.0

24-83

There are nine descent profiles; each is determined by the aircraft's grp category/mach number
range combination. The mach number is strictly dependent on the cruising altitude and speed and
is computed by the mach_vs_alt procedure.

If the flight's descent is to be modeled, the distance along the flight path from cruise altitude to
touch-down (i.e., dist_descent) must be computed. Assign_a_profile calculates this parameter
by computing a cruising altitude index and using that to look up the dist_descent value from the
descent_by_alt map. If the flight descent is not to be modeled, the dist_descent value is set to
zero.

Check for Altitude/Distance Incompatibility. If a flight's take-off and/or descent is to be
modeled, it is possible that, due to a short total distance, the aircraft's filed cruising altitude may
be too high according to the profiles. If such an inconsistency is detected, the filed cruising
altitude is decremented iteratively until the constraints between the total flight distance, the
distance to the leveling out point (i.e., dist_cruz), and the distance down to the runway (i.e.,
dist_descent) are satisfied.

General Error Handling and Output: the Profile.Txt File. Error detection, assessment,
and reporting is a primary function of assign_a_profile. There are currently eleven error types
associated with the ascent and descent stages of the flight. There are two levels of severity in
error assessment: minor inconsistencies which may or may not be adjusted, and severe errors. A
flight with a severe error is no longer processed. The error types according to severity are
described in Table 24-13. All errors regardless of severity are reported in an ASCII file named
Profile.Txt. The file is opened and closed daily by the parser.

 Table 24-13. Errors Associated with assign_a_profile

 Minor Inconsistencies Severe Errors

 designator is not in the aircraft_descriptor map

 cruise altitude is above FL600
 cruise altitude is above aircraft ceiling

 cruise altitude is zero or negative

 cruise speed is too high for its grp category

 flt length is negative

 cruise speed is too high for flight below FL100

 cruise speed too high for the database

 cruise altitude vs. flt length conflict

 cruise speed is zero or negative

 flight length is too long

24.5.5 The cleanup_evlist Routine

Purpose
Procedure cleanup_evlist performs post-processing on the event list. It examines the event list
and removes various undesirable or erroneous features that are by-products of the route
processing described in Section 24.4.3.

ETMS System Design Document
Version 6.0

24-84

Input
Cleanup_evlist receives two types of input:

 (1) Event list

 (2) Flag indicating whether this is a tailo red route or not

Output
Cleanup_evlist produces two types of output as well:

 (1) “cleaned up” version of the event list

 (2) Flags indicating the changes made and problems found in the original event list.
The Parser takes these flags and keeps running counts which are displayed
periodically

Processing
The cleaning up of the event list is performed in two steps. First, the cleanup procedure makes a
series of checks in order to identify which events, if any, should be deleted. These events are
logically deleted through the use of a Boolean tag array, which is the same size as the event list
array. Logically deleting an event consists of setting the corresponding slot in the tag array to
false and adjusting the distance and heading fields of the succeeding event. Second, events
which have been logically deleted are physically deleted from the array simply by moving up all
elements that are to be retained.

The different checks performed on the event list are described in the following sections.

Change en Route Airport Events into Unnamed Fix Events. Airports should appear
only at the beginning or end of an event list. If an airport appear elsewhere, its type is changed
to unnamed_fix and the airport in middle of event list flag is set.

Perform “Reasonableness” Check. To find stray points, the general heading of the flight
is derived from the coordinates of the first and last point in the list. Each event with a distance of
more than 500 miles is found. If the heading of one of these events is more than 45_ off from
the general heading, and if the distance to the next event is over 500 miles, then this is
considered an unreasonable sequence, and the unreasonable event list flag is set.

The flights most commonly flagged by this code are military and overseas flights. These flights
seem to be the most erratic. The fix_verify routine does similar checks, but tosses fixes if they
are out of range. The fix_verify routine code also uses more lenient bearing and distance checks.

Such event lists are not deleted or modified. The purpose of this flag is to allow us to track
down problems in event lists, such as the non-unique fixes mentioned above.

Ensure that Sector, ARTCC, and Route Entries and Exits Match up. The event list is
traversed to ensure that for each sector, ARTCC, and route entry there is a matching exit. Any
extraneous or non-matching entries and exits are deleted unless it is the last ARTCC or route
entry in the flight. Another exception to this is a tailored route. The event list in this case will
begin at some point during the flight, not at take-off; thus, the first sector event could be an exit

ETMS System Design Document
Version 6.0

24-85

rather than an entry. Such sector exits are not deleted. When sector events are deleted, one or
more of the following flags are set:

• sector exit w/o matching sector entry

• sector entry w/o matching sector exit

• sector entry/exit pairs interleaved

Remove Sector Crossings Where Distance Travelled is Small. Since sector
boundaries are represented not as straight lines, but as sequences of grid cells, they tend to be
jagged. Should a flight path be along such a boundary, as shown in Figure 24-23, the
corresponding event list may model the flight as continuously moving back and forth between
the two sectors. This apparent zigzagging effect is marked by sector entries and exits that are
only a few miles apart.

flight path

sector Bsector A

Figure 24-23. Extraneous Sector Crossings

To deal with this problem, the event list post-processor searches the list for sector entries that are
separated from their matching sector exits by less than ten miles. All such pairs are deleted. The
result will be an event list that shows the plane as having been in one sector or the other for the
entire distance. This check also removes cases where a flight passes through the corner of a
sector for a distance of less than ten miles.

Remove Fix Events Which Have a Very Low Altitude. Occasionally, fix events with
zero altitudes will slip into the event list just prior to the final (airport) event. This happens when
the Route Processor generates events for fixes that share the grid cell containing the destination
airport. Such fixes are typically modeled to have an altitude of zero. Since these fixes are just a
useless remnant of the data representation, they are removed. Cleanup_evlist searches the event
list for all fixes with zero altitude, deletes them, and sets the fix at very low altitude flag.

Ensure That Event List End Points are Marked as Waypoints. The ASD draws the
route represented by the event list by connecting each waypoint in the list. Therefore, in order to
be sure that the entire route will be drawn, the first and last events should always have their

ETMS System Design Document
Version 6.0

24-86

waypoint flags set. Cleanup_evlist sets these flags, if they were not set already.

Error Conditions and Handling
The Parser performs two levels of error-handling. Some errors may necessitate the termination
and restarting of the process; however, most errors which occur are minor data extraction errors
that do not terminally affect the parser process and may or may not affect the data sent to the
Flight Database Processor.

Terminal errors are usually caused by failures within other processes or by network problems
(e.g., stack and queues not being created or a mailbox not being found across the network).
When a terminal error occurs, the process sends some diagnostic message to the screen and/or an
error file and exits. The Parser is then restarted by Nodescan and reconnected to the other
processes.

The Parser records any error occurring during the data extraction process in a time-stamped
diagnostics file, which includes the NAS message text and a brief description of what caused the
error. Errors occurring during the creation or cleaning up of the event list are catalogued by the
Parser's assignment of certain error values to unsuccessful event list operations. The Parser
checks the return status of the creation or cleaning-up function and, if it finds an error, logs an
appropriate message in the diagnostics file. Unless the Parser finds virtually no usable data in a
NAS message, the data extracted are shipped to the Flight Database Processor, the idea being
that receiving partial data for a flight is better than receiving no data for a flight.

24.6 Parser Source Code Organization
The Parser source code resides in C files under configuration management using ClearCase.

24.7 Parser Data Structure Tables

24.7.1 The nas_msg_type Data Structure
The nas_msg_type data structure is used to pass necessary flight information between the
Parser process and the Route Processor function when a flight path route (field 10) is present.
Nas_msg_type is a record structure comprised of all the data fields needed to create an event list
from the flight's route. This flight information is used by the Route Processor function to create
an event list that models the aircraft's route of flight. The completed event list is then passed
back to the Parser process. Table 24-14 illustrates the structure.

24.7.2 The map_data_type and no_route_data_type Data Structures
The map_data_type data structure is used by all the main routines of the Parser process. It is a
record structure comprised of all the possible data fields that may be extracted from any input
message type. It is used to store flight information culled from a single input message. When all
the flight data from a message has been extracted and converted, it is passed to the Flight
Database Processor (via the parser.relay process) using this data structure. See Table 24-15 for
details on the map_data_type structure

ETMS System Design Document
Version 6.0

24-87

For messages that have no field 10s (TZs, DZs, AZs, and RZs), the information is passed to the
Flight Database Processor through the no_route_data_type structure (see Table 24-16).

 Table 24-14. nas_msg_type Data Structure

nas_msg_type

Library Name: ttm_openlib

Element Name: parser_routeproc.h

Purpose:
To contain specific flight information needed to create an
event list from the given route (field 10) by the route
processor.

 Data Item Definition Unit/Format Range Var. Type/Bits

 flight_id NAS flight identifier 1 or more letters
followed by -- string10

 aircraft_type NAS aircraft type

designator.

 Letter fol. by up
to 3 letters & -- string4

 dep_time Flight’s departure time. Minutes since
midnight 0 – 1439 short

 cruising_velocity Filed cruising speed. (nautical miles *
100) per minute. -- short

 cruising_altitude Filed cruising altitude. Hundreds of
feet. -- short

 message_type Type of NAS message
currently being parsed.

 Enumerated
type. 1 – 14 + short

 new_data Set if altitude and speed are
modified by profile a/c

_ T/F boolean

 field_10 Text of route to be

processed.

_ -- array [1…300] of

char

 time_type Prefix of coordination time _____________
_ -- char

 n_ti_fix Coordination fix from NAS
mes-sage.

 Lat/lon or airport
name or fix
name.

 -- string14

+ 1 = AF (amendment message)

2 = AZ (arrival message)

3 = CT (estimated departure clearance time

4 = DZ (departure message)

5 = FZ (flight plan message)

6 = RZ (cancellation message)

7 = UZ (update message)

9 = TZ (5-minute location update)

10 = FA (feedback loop type;sends messages from FDB back to Parser)

11 = CCC (ARTCC status message)

12 = SYNC (updated ASD message)

13 = FS (FZ from schedule database)

14 = RS (RZ from schedule database)

15 = EDCT (controlled departure time message from ETMS)

16 = TO (oceanic position updates)

22 = TA (global position updates – not currently being received)

ETMS System Design Document
Version 6.0

24-88

 Table 24-15. map_data_type Data Structure

map_data_type

Library Name: parserfdb_openlib

Element Name: message_structsh

Purpose:
Contains data extracted from a NAS message with a
route (field 10) to be passed to the FDBP. Not all fields
will be filled depending on the message type.

 Data Item Definition Unit/Format Range Var. Type/Bits

 message_type specific type of NAS

message

 short

 message_time_sta

mp

 encoded time of when
message was received.

 CALCLOCK

 center_origin_of_
message

 ARTCC that message came
from

 char

 flight_id unique flight identifier string7

 computer_id 3-digit flight identifier within
an ARTCC

 000 – 999 string3

 num_aircraft number of aircraft char

 ac_eqp_prefix aircraft equipment
prefix indicator

 char

 aircraft_type type of aircraft string4

 ac_eqp_suffix
 aircraft equipment
suffix indicator

 char

 user_category flight usage usercat_t

 cat_class flight class flight_regs_t

 actype_class aircraft class actype_t

 ac_category aircraft category ac_cat_t

 ac_weight_class aircraft weight class ac_weight_t

 speed flight’s speed short

 speed_type type of speed char

ETMS System Design Document
Version 6.0

24-89

 Table 24-15. map_data_type Data Structure (continued)

map_data_type (continued)

Library Name: parserfdb_openlib

Element Name: message_structsh

Purpose:
Contains data extracted from a NAS message with a
route (field 10) to be passed to the FDBP. Not all fields
will be filled depending on the message type.

 Data Item Definition Unit/Format Range Var. Type/Bits

 coordination_fix_eve

nt_2

 TO message. The 2nd
predicted position

 erect

 arrival_fix_event event created at arrival fix short_erect

 dep_center departure airport char

 arr_cen arrival airport char

 tail_id string7

 actual_position_time an actual position time:
hhmmss

 short_time_t

 wind_direction wind direction in degrees,
measured clockwise off North degrees short

 wind_speed wind speed in knots knots short

 air temperature air temperature in degrees
centigrade

 degrees
centigrade short

 az_source (future use) char

 geographic_flags (future use)
 short

 pad padding for alignment:
unused

 string8

 af_field_changes field numbers changed by
AF message

 NAS message
field 10 short

 new_flight_id (future use) string7

 dsg_index short

 acft_index index of aircraft type short

 ascent_index index of ascent table
 short

 descent_index index of descent table short

ETMS System Design Document
Version 6.0

24-90

 Table 24-16. no_route_data_type Data Structure

no_route_data_type

Library Name: parserfdb_openlib

Element Name: message_structsh

Purpose:
Contains data extracted from a NAS message without a
route to be passed to the FDBP. Not all fields will be
filled depending on the message type.

 Data Item Definition Unit/Format Range Var. Type/Bits

 message_type specific type of NAS

message

 short

 message_time_sta

mp

 encoded time of when
message was received.

 CALCLOCK

 center_origin_of_
message

 ARTCC that message came
from

 char

 flight_id unique flight identifier string7

 computer_id 3-digit flight identifier within
an ARTCC

 string3

 num_aircraft number of aircraft char

 ac_eqp_prefix aircraft equipment
prefix indicator

 char

 acft_type type of aircraft string4

 ac_eqp_suffix aircraft equipment
suffix indicator

 char

 user_category flight usage usercat_t

 cat_class flight class flight_regs_t

 actype_class aircraft class actype_t

 ac_category aircraft category ac_cat_t

 ac_weight_class aircraft weight class ac_weight_t

 speed flight’s speed short

 speed_type type of speed char

 dept_point flight’s departure airport string4

 altitude1 flight’s altitude altitude / 100 short

 altitude2 flight’s altitude altitude / 100 short

 altitude_type flight’s altitude type char

ETMS System Design Document
Version 6.0

24-91

 Table 24-16. no_route_data_type Data Structure (continued)

no_route_data_type (continued)

Library Name: parserfdb_openlib

Element Name: message_structsh

Purpose:
Contains data extracted from a NAS message without a
route to be passed to the FDBP. Not all fields will be filled
depending on the message type.

 Data Item Definition Unit/Format Range Var. Type/Bits

 dest_point arrival airport string4

 est_time_arr estimated time of arrival short

 coordination_fix_eve

nt

 coordination fix event erect

 coordination_fix_eve

nt1

 TO message. The 1st
predicted position

 erect

 coordination_fix_eve

nt2

 TO message. The 2nd
predicted position

 erect

 arrival_fix_event short_erect

 dep_center departure airport center char

 arr_cen arrival airport center char

 tail_id string7

 actual_position_time an actual flight position time
hhmmss

 short_time_t

 wind_direction wind direction in degrees,
measured clockwise off North short

 wind_speed wind speed in knots short

 air temperature air temperature (centigrade) short

 az_source (future use)
 char

 geographic_flags (future use)
 short

ETMS System Design Document
Version 6.0

24-92

